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Abstract: The Bayesian model consists of the prior–likelihood pair. A prior–data conflict arises whenever
the prior allocates most of its mass to regions of the parameter space where the likelihood is relatively
low. Once a prior–data conflict is diagnosed, what to do next is a hard question to answer. We propose
an automatic prior elicitation that involves a two-component mixture of a diffuse and an informative prior
distribution that favours the first component if a conflict emerges. Using various examples, we show that
these mixture priors can be useful in regression models as a device for regularizing the estimates and
retrieving useful inferential conclusions. The Canadian Journal of Statistics 50: 491–510; 2022 © 2021
The Authors. The Canadian Journal of Statistics/La revue canadienne de statistique published by Wiley
Periodicals LLC on behalf of Statistical Society of Canada.
Résumé: Un modèle bayésien consiste à combiner une vraisemblance et une distribution a priori dans
l’objectif d’estimer une distribution a posteriori pour un (ou des) paramètre(s) du modèle. On dit qu’il
y a une inconsistance (ou conflit) entre les observations et la loi a priori lorsque cette dernière alloue la
majeure partie de sa masse aux régions de l’espace des paramètres où la vraisemblance est relativement
faible. Lorsqu’une telle situation se produit, il n’est pas toujours aisé d’y remédier. A cet effet, les auteurs
proposent une solution qui offre une élicitation automatique de l’a priori, ilicitation basée sur un mélange de
deux distributions a priori, l’une diffuse et l’autre informative. L’approche proposée favorisera la première
composante du mélange en cas de conflit. Les auteurs illustrent l’utilité de cette approche à travers plusieurs
exemples et modèles de régression tout en mettant en évidence ses capacités à servir comme dispositif et
outil de régularisation des estimations et d’inférence statistique. La revue canadienne de statistique 50:
491–510; 2022 © 2021 Les auteurs. La revue canadienne de statistique/The Canadian Journal of Statistics,
publiée par Wiley Periodicals LLC au nom de la Société statistique du Canada.

1. INTRODUCTION

The Bayesian model consists of the prior–likelihood pair (Gelman & Shalizi, 2013), and checking
the model components is an essential statistical task. Recently, starting from the approaches of
Box (1980), Rubin (1984) and Gelman, Meng & Stern (1996), simultaneous and joint checks of
both components have been developed. However, along with these posterior predictive checks,
the need for a statistical model to be generative has lately emerged. In particular, the ability to
generate realistic hypothetical data is validated through prior-predictive checking (Gabry et al.,
2019), and the plausibility of the prior is then somehow checked in a preliminary and separate
way using a simulation perspective.
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In this approach, a prior could be checked against the data and subsequently changed
depending on the results of this check. Rather than merely representing the belief of the
statistician before observing the data (Garthwaite, Kadane & O’Hagan, 2005), the analyst
considers the prior distribution as a device that can convey information, regularize and suitably
restrict the space of the unknown parameters (Gelman, 2017). As suggested by Gelman, Simpson
& Betancourt (2017), to ensure a robust analysis we need to go beyond the standard Bayesian
workflow where the prior is meant to be chosen without any reference to the data.

However, if we admit that the prior can be (judged to be) grossly inappropriate, these
two model components (the prior and the sampling distribution) could contradict each other:
when the prior concentrates most of its mass in low-density areas of the likelihood, we incur
a prior–data conflict (Evans & Moshonov, 2006; Bousquet, 2008; Evans & Jang, 2011a; Al
Labadi & Evans, 2017). In spite of the fact that this issue is recognized among Bayesian
practitioners, remarkably few tools have been identified for resolving such a conflict once it
has been identified. The Kullback–Leibler divergence criterion (Bousquet, 2008) and Bayesian
P-values (Evans & Moshonov, 2006; Nott et al., 2016) have been developed for assessing the
extent of prior–data conflict, but neither approach is used explicitly to elicit an improved prior
distribution. In this article, we outline a procedure for including Bayesian P-values directly in
the prior formulation to prevent a prior–data conflict. Following the logic outlined in Gelman et
al. (2008), the usefulness of our procedure will be revealed in a regression context, where prior
predictive checks highlight the importance of a careful elicitation. The main thread concerning
use of a prior–data conflict to derive an improved prior beginning from an informative prior can
be traced to Evans & Jang (2011a).

For the rest of this article, our working assumption will be that the sampling distribution
is correct. Given a pair of priors p, q, where the first one is informative (and so could conflict
with the data) and the second one is noninformative (so that it should not conflict with the data),
our strategy is to combine them in a new mixture prior 𝜋 = 𝜓q + (1 − 𝜓)p, and to develop an
automatic procedure for estimating the mixture weight 𝜓 in such a way that any conflict between
p and the data no longer occurs. The resulting prior is then a robust alternative that lies between
the informative prior p and the noninformative prior q. It would then be reasonable to choose
the weight 𝜓 such that as 𝜓 approaches 1—meaning that a substantial prior–data conflict
occurs—q is favoured; conversely, as 𝜓 approaches 0—meaning that no conflict occurs—p is
then a suitable prior.

The choice of the priors p and q is of primary importance in our approach. However,
assigning a mixture prior weighted with an estimated 𝜓 to a regression parameter does not
guarantee robustness. Moreover, eliciting a rather informative prior, say a standard normal
 (0, 1), may dramatically change its impact depending on the sampling model. In such extreme
cases, we suggest and implement using a predictive informative prior. This is a data-driven
prior distribution that depends on the sufficient statistic for the regression model, and is
likely able to regularize the inferences, even when the informative prior and our proposed
mixture fail. In practice, we do not believe that the dependence of our prior distribution on
data is a major concern. We feel our proposed approach may be naturally located within
the so-called falsificationist Bayesian philosophy (Gelman & Hennig, 2017), which openly
deviates from subjective and objective Bayesian practices and in which the prior is open to
falsification.

In a sense, it is immediate to see how the family of mixture priors {𝜓q(𝜃) + (1 − 𝜓)p(𝜃);
𝜓 ≥ 0} represents a natural priors’ hierarchy before viewing the data; distinct priors can be
in fact identified as 𝜓 varies. Thus, our mixture prior is a device whose aim is to incorporate
any possibility of prior–data conflict, allowing the absence of any such prior–data conflict as
a particular case. So, it works as a sort of built-in prior with no need to routinely check many
weakly informative priors and possibly to change them.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11637
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2022 AVOIDING PRIOR–DATA CONFLICT 493

The rest of the article is organized as follows. Section 2 provides a quick overview of the
prior–data conflict measures proposed by Evans & Moshonov (2006). In Section 3, we present
our methodology, together with some theoretical results that quantify the extent of any prior–data
conflict we can expect a priori when using 𝜋 rather than p. We also justify the use of predictive
informative priors in extreme cases. Section 4 explores several regression applications. Some
concluding remarks and observations are provided in Section 5.

2. PRIOR–DATA CONFLICT: SOME BACKGROUND

We incur a prior–data conflict when we elicit a prior whose density mass concentrates on
values of the parameter 𝜃 that are not supported by the data. In other words, such a conflict
happens when the prior places its mass primarily on distributions in the sampling model for
which the observed data are surprising (typically when only a few data points are observed).
As mentioned by Evans & Moshonov (2006), Evans & Jang (2011a) and Nott et al. (2016),
checking for prior–data conflicts takes a distinct perspective from verifying the appropriateness
of the likelihood components.

We denote the sampling model for the data y in the sample space  by {p(y|𝜃) ∶ 𝜃 ∈ Θ ⊆ Rd,

d ≥ 1}, where each p(y|𝜃) is a probability density on  with respect to some support measure 𝜇.
The prior distribution p(𝜃) then leads to a prior predictive probability measure

M(A) = ∫Θ ∫A
p(y|𝜃)p(𝜃)𝜇(dy)v(d𝜃) = ∫A

m(y)𝜇(dy) (1)

on , where A ⊆  , and m(y) = ∫Θ p(y|𝜃)p(𝜃)v(d𝜃) is the density of M with respect to the measure
𝜇, known as the prior predictive distribution for the sample y. For a function T ∶  →  , we
may define the marginal prior predictive density

mT (t) = ∫Θ p(t|𝜃)p(𝜃)v(d𝜃) (2)

for T , where p(t|𝜃) is the marginal density for T . If T is a minimal sufficient statistic for the
sampling model p(y|𝜃), it is well known that the posterior is the same whether we observe y or
T(y). In Evans & Moshonov (2006) and Evans & Jang (2011a), a prior–data conflict arises when
the observed value T(y0) = t0 turns out to be surprising when compared with the distribution MT :

P(t0) = MT (mT (t) ≤ mT (t0)). (3)

The measure of surprise in Equation (3) is a prior predictive P-value according to the prob-
ability distribution MT , and its purpose is to locate t0 in the distribution MT . Evans & Jang
(2011b) stated a consistency result for Equation (3), proving that the limiting value for this
tail probability as the data grow measures the extent to which the true value of the parameter
is a surprising value with respect to the choice of the prior. If mT is unimodal, Equation (3)
represents the probability P(t0) such that the value t0 falls in a low-density distribution
area. It is really only when very small values of (3) are obtained that problems arise since
then the data contradicts the prior. If P(t0) approaches zero, this means that t0 lies in a
region where MT assigns very little probability, and then a prior–data conflict is likely to
occur.

Although there may be many concerns about the use of these P-values to detect prior–data
conflicts, in the rest of the article we will use P(t0) to detect a possible prior–data conflict. We
will return to this point, which plays a key role in our approach, in Section 3.

DOI: 10.1002/cjs.11637 The Canadian Journal of Statistics / La revue canadienne de statistique
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3. A CLASS OF PRIORS FOR AVOIDING PRIOR–DATA CONFLICTS

3.1. The Mixture Prior
The goal is to elicit an informative prior p(𝜃), which we will henceforth call the reference
informative prior for a problem of interest. Moreover, we want to avoid the possibility that this
prior is in conflict with the observed data according to the P-value described in Equation (3),
or that it dominates the inference when data are not fully informative. To dilute the effect of
this choice, we may combine p(𝜃) with a noninformative prior q(𝜃), 𝜃 ∈ ℝ1 for simplicity, in a
mixture prior 𝜋(𝜃) using the weight 𝜓 , as follows:

𝜋(𝜃) = 𝜓q(𝜃) + (1 − 𝜓)p(𝜃). (4)

The idea of using mixture priors to overcome a prior–data conflict was previously proposed,
in the context of clinical trials, by Schmidli et al. (2014) and Mutsvari, Tytgat & Walley
(2016). However, the authors were vague about the choice of the mixture weights, suggesting
that this specification can be based on the degree of confidence of the clinical trial team in
the relevance of the historical data, or more simply, that the larger weight, say 1 − 𝜓 = 0.7 or
1 − 𝜓 = 0.9, should be assigned to the informative prior. In our opinion, this is a subjective
choice designed to correct a subjective source as an informative prior. To wisely use mixture
priors in applied statistics, we believe the choice of the weight 𝜓 should be automatic rather than
subjective.

3.2. Choice of the Mixture Weight 𝜓
We propose a strategy for choosing 𝜓 , which depends on the P-value in Equation (3) evaluated
for 𝜋; in particular, 𝜓 is such that the mixture prior does not imply a conflict. According
to Equation (2), the marginal prior predictive density for the minimal sufficient statistic T
under the prior 𝜋, m𝜋

T = ∫Θ p(t|𝜃)𝜋(𝜃)v(d𝜃), yields the prior predictive probability measure
M𝜋

T = ∫A m𝜋
T (t)𝜇(dt). Using the mixture prior identified in Equation (4), it follows at once that

m𝜋
T = 𝜓mq

T + (1 − 𝜓)mp
T . (5)

Given the observed statistic value T(y0) = t0, we propose to choose the smallest value of 𝜓

such that the P-value P𝜋(t0) = M𝜋
T (m

𝜋
T (t) ≤ m𝜋

T (t0)) exceeds the threshold 𝛼 and, consequently, a
prior–data conflict no longer exists, i.e.,

𝜓 = inf{𝜓|P𝜋(t0) ≥ 𝛼}. (6)

In this context, 𝛼 acts as a tuning parameter; its choice is connected to the degree of flexibility
assumed by the experimenter. Evans & Moshonov (2006) do not address this issue; they only
recognize a conflict in examples where the P-value is at most 0.05. Evans & Jang (2011a)
allude to the fact that 𝛼 is usually some cut-off value that depends on the application. Gelman
et al. (2013) are even more vague, suggesting that a discrepancy in a statistic is found when its
observed value falls in one of the tails of its replicated distribution.

The goal is not a decision about the existence of a conflict (the method is applied when there
are clues that a conflict might occur), but it is vital for us to define a prior that incorporates
the absence of a conflict as a particular case, and according to which the degree of this conflict
(choice of 𝛼) may vary based on the individual cases and the investigator’s judgement.

3.3. Specifying the Priors
The final degree of freedom provided to users of our approach is the choice of q, the
noninformative prior. Although many definitions of noninformative priors have been proposed

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11637
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2022 AVOIDING PRIOR–DATA CONFLICT 495

in the past (Kass & Wasserman, 1996; Consonni et al., 2018), it is sufficient for our purposes
to consider the absence of the possibility of any prior–data conflict as a necessary characteristic
of any noninformative prior, as suggested by Evans & Moshonov (2006). In the examples in
Section 4, we use the weakly informative priors proposed by Gelman et al. (2008), which, as
shown in Evans & Jang (2011a), are unlikely to cause any prior–data conflict.

However, we need to characterize when the mixture prior identified in Equation (4) is weakly
informative with respect to p; we do so by following the procedure proposed by Evans & Jang
(2011a). To assess whether a base prior q is weakly informative with respect to an elicited prior
p, these authors suggest evaluating

Mp
T (P

q(t0) ≤ x𝛾 ), (7)

where Pq(t0) = Mq
T (m

q
T (t) ≤ mq

T (t0)) is the P-value used to check whether or not there is
prior–data conflict with respect to q, and x𝛾 ∈ [0, 1] is a quantile of the distribution of Pp(t0). As
Evans and Jang remark, if mp

T (t0) has a continuous distribution when t0 ∼ Mp
T , then x𝛾 = 𝛾 . We

say that q is weakly informative relative to p at level 𝛾 if the value identified in Equation (7) is
at most x𝛾 . Moreover, the degree of weak informativity of a prior q relative to a prior p can be
quantified via the ratio

rpq ≡ 1 − Mp
T (P

q(t0) ≤ x𝛾 )∕x𝛾

= x𝛾 − Mp
T (P

q(t0) ≤ x𝛾 )∕x𝛾

= Mp
T (P

p(t0) ≤ x𝛾 ) − Mp
T (P

q(t0) ≤ x𝛾 )∕x𝛾 , (8)

where the final equality holds under the assumption that the P-value Pp(t0) is uniformly
distributed when t0 ∼ Mp(t0), as suggested by Evans & Jang (2011a). The ratio specified in
Equation (8) represents, as a proportion, the reduction in any prior–data conflict that we can
expect, a priori, when using q rather than p. In the mixture prior context, we want to check when
𝜋 is weakly informative relative to p, and how much less informative than p it is via a measure
analogous to the ratio identified in Equation (8) for the two priors p, 𝜋. The following result
characterizes the notion of weak informativity for the mixture prior identified in Equation (4).
The proof of the theorem may be found in the Appendix.

Theorem 1. Suppose p and q are proper prior distributions for 𝜃, the parameter of a statistical
model p(y|𝜃), and 𝜋(𝜃) = 𝜓q(𝜃) + (1 − 𝜓)p(𝜃) is the mixture prior, for any 𝜓 ≥ 0. Then the ratio
rp𝜋 ≡ [Mp(Pp(t0) ≤ x𝛾 ) − Mp(P𝜋(t0) ≤ x𝛾 )]∕x𝛾 , which represents, as a proportion, the reduction
in any prior–data conflict that we can expect, a priori, when using 𝜋 rather than p, equals
𝜓(Pq(t0) − Pp(t0))∕x𝛾 , with the numerator 𝛿pq ≡ 𝜓(Pq(t0) − Pp(t0)) bounded between 0 and 1.
Moreover, 𝜋 is weakly informative relative to p at level 𝛾 if and only if 𝛿pq > 0 , i.e., whenever
𝜓 > 0 and Pq(t0) > Pp(t0).

This result underlines the role played by 𝜓 in the prior–data conflict context and quanti-
fies the extent of the reduction in any prior–data conflict we can expect when using the
mixture prior 𝜋 rather than the informative prior p: 𝛿pq ≈ 0 (more or less the same quan-
tity of prior–data conflict raised by p) when the informative prior p is entirely weighted
towards the mixture prior (𝜓 ≈ 0,Pp(t0) ≈ Pq(t0)); conversely, 𝛿pq ≈ 1 when the noninformative
prior q is entirely weighted towards the mixture prior (𝜓 ≈ 1,Pp(t0) ≈ 0). In the following
example we retrieve this result and the typical meaning of noninformative priors by comparing
the mixture prior with a normal prior in the case of a normal likelihood for the observed
data.

DOI: 10.1002/cjs.11637 The Canadian Journal of Statistics / La revue canadienne de statistique
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Example 1. Comparing the mixture with a normal prior.

Suppose we collect a sample y = (y1,… , yn) from a  (𝜃, 1) distribution. The minimal
sufficient statistic is T(y) = ȳ ∼  (𝜃, 1∕n). Suppose that the prior p on 𝜃 is  (𝜃0, 𝜎

2
1 ), whereas

the prior q on 𝜃 is a  (𝜃0, 𝜎
2
2 ), with 𝜃0, 𝜎2

1 , 𝜎2
2 known. We can combine p and q in a mixture

prior 𝜓q(𝜃) + (1 − 𝜓)p(𝜃), with 𝜓 estimated and known. Then, we can compute

P𝜋(t0) = M𝜋
T (m

𝜋
T (t) ≤ m𝜋

T (t0))

= 𝜓Mq
T (m

q(t) ≤ mq(t0)) + (1 − 𝜓)Mp
T (m

p(t) ≤ mp(t0))

= 𝜓

(
1 − G1

(
(t0 − 𝜃0)2

1∕n + 𝜎2
2

))
+ (1 − 𝜓)

(
1 − G1

(
(t0 − 𝜃0)2

1∕n + 𝜎2
1

))
,

where Gk denotes the cumulative distribution function of the chi-squared random variable with
k degrees of freedom. It follows that

Mp
T (P

𝜋(t0) ≤ 𝛾)

= Mp
T

(
𝜓

(
1 − G1

(
(t0 − 𝜃0)2

1∕n + 𝜎2
2

))
+ (1 − 𝜓)

(
1 − G1

(
(t0 − 𝜃0)2

1∕n + 𝜎2
1

))
≤ 𝛾

)

= Mp
T

(
1 − G1

(
(t0 − 𝜃0)2

1∕n + 𝜎2
1

)
+ 𝜓

(
1 − G1

(
(t0 − 𝜃0)2

1∕n + 𝜎2
2

)

−

(
1 − G1

(
(t0 − 𝜃0)2

1∕n + 𝜎2
1

)))
≤ 𝛾

)

= Mp
T

(
1 − G1

(
(t0 − 𝜃0)2

1∕n + 𝜎2
1

)
≤ 𝛾 − 𝜓𝛿pq

)

= Mp
T

(
(t0 − 𝜃0)2

1∕n + 𝜎2
1

≥ G−1
1

(
1 − 𝛾 + 𝜓𝛿pq

))

= 1 − G1
(
G−1

1

(
1 − 𝛾 + 𝜓𝛿pq

))
= 𝛾 − 𝛿pq,

where 𝛿pq = 𝜓
(
Pq(t0) − Pp(t0)

)
= 𝜓

(
G1

(
(t0−𝜃0)2

1∕n+𝜎2
1

)
− G1

(
(t0−𝜃0)2

1∕n+𝜎2
2

))
. This quantity is at most

𝛾 iff 𝜓 > 0 and Pq(t0) − Pp(t0) > 0, where the latter condition applies only when 𝜎2
2 > 𝜎2

1 , as is
customary for the case of two prior distributions p and q; see Evans & Jang (2011a).

3.4. Predictive Informative Priors
The choice of the statistic T(y) and the two priors p and q plays a key role in our method.
Unfortunately, when a serious prior–data conflict exists, we will need to replace the prior, and
that would seem to suggest some dependence on the data; after all, we are replacing the prior
because of the observed data. In many applied problems, it may then be useful to elicit a prior that
does not cause any prior–data conflict. From this perspective, the prior should act as a device and
its choice should guarantee robust inferential conclusions. If the mixture prior that we proposed

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11637
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2022 AVOIDING PRIOR–DATA CONFLICT 497

in Section 3.1 is revealed to be in conflict with the data after a first check (thus, 𝜓 approaches
one), the analyst could be tempted to reinforce his prior assumptions by defining a predictive
informative prior pT (𝜃), whose characteristic is to be centred at the sufficient statistic. Consider
the location normal model (Evans & Moshonov, 2006), where yi ∼  (𝜃, 𝜎2), and 𝜃 ∼  (0, 1);
then, the predictive informative prior is pT (𝜃) =  (t0, 1), where t0 ≡ T(y0) = n−1 ∑

i yi is the
observed value of the minimal sufficient statistic. In general, we propose using the formulation

pT (𝜃𝑗) =  (t0𝑗 , 1) (9)

for the predictive informative prior, where t0𝑗 might be the maximum likelihood estimate or any
other reasonable estimate for the parameter 𝜃𝑗 . The rationale here is that by choosing this prior
which is centred on the maximum likelihood estimate we may have a readily available correction
in the direction of the data and thus obtain a more robust prior. Some possible benefits associated
with this particular choice will be revealed by the examples that we consider in Section 4.

Nevertheless, we claim that this is a very strong data-dependent prior, and its use should be
restricted to extreme cases. For such a reason, in terms of a natural priors’ hierarchy, the users are
strongly encouraged to elicit a preliminary reference informative prior p, and possibly replace it
with a predictive informative prior in the mixture prior identified in Equation (4) after checking
for the possibility of prior–data conflict using P(t0) specified in Equation (3).

3.5. The Multi-Parameter Case
When 𝜃 ∈ ℝp, we have a parameter-vector 𝜃 = (𝜃1, 𝜃2,… , 𝜃p). To implement our procedure, we
can assign a mixture prior to each of the p components of 𝜃 or, alternatively, we can define an
approximation of m(y) for only the component of interest and obtain a pseudo-prior predictive
distribution. For example, if only 𝜃1, the initial element of 𝜃, was of interest, we could use

m(y|�̂�2, �̂�3,… , �̂�p) = ∫𝜃1

p(y|𝜃1, �̂�2, �̂�3,… , �̂�p)p(𝜃1)v(d𝜃1), (10)

where 𝜃2, 𝜃3,… , 𝜃p are replaced by consistent estimates �̂�2, �̂�3,… , �̂�p. We may then define the
analogous pseudo-distribution

m(t|�̂�2, �̂�3,… , �̂�p) = ∫𝜃1

p(t|𝜃1, �̂�2, �̂�3,… , �̂�p)p(𝜃1)v(d𝜃1) (11)

for the marginal prior predictive density for T . We will rely on these pseudo quantities in
Section 4 for regression models that involve more than one parameter.

The prior predictive distribution specified in Equation (11) uses consistent estimates for
𝜃2, 𝜃3,… , 𝜃p, and this may result in using the observed data twice. However, the alternative,
i.e., evaluating the multi-dimensional integral of dimension p, would be computationally costly
and would require an approximation. Evans & Moshonov (2007) proposed checking individual
prior components in hierarchical priors, but their approach is based upon the existence of a set
of ancillary statistics in cases where, moreover, the decomposition of the prior conforms to a
certain structure. In fact, they focus on exponential models and group statistical models, and,
as they report, even in those contexts only certain decompositions are seen to be amenable
to their methodology. As an alternative, in their Example 2 they chose to use hierarchical
checking without sufficient ancillaries. First they checked the marginal prior on the variance for
a location-scale normal model. The conditional prior for the mean was checked subsequently.

The advantage that our proposed approach affords is that Equation (11) may be adopted
for almost any prior structure, with no distinction between hierarchical, independent and other
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498 EGIDI, PAULI AND TORELLI Vol. 50, No. 2

forms of dependent priors. Furthermore, there is no need to require the existence of any ancillary
statistics at this stage. The main drawbacks of our procedure are the possible double use of the
data and the sensitivity of the prior predictive distribution to different estimators.

3.6. Computational Issues and Simulations
To compute the values P(t0) specified in Equation (3), we often need to use numerical or
simulation methods, since the distributions MT ,M

𝜋
T are often not available in an analytical

form. For this reason, we usually approximate Equation (2) by drawing hypothetical replications
yrep

1 ,… , yrep
n from m(y) and obtain the simulated distributions for mT (t),m𝜋

T (t). We are then able
to compute the P-values and the mixture weight 𝜓 as outlined in Equation (6).

In the Supplementary Materials that accompany this article, we provide the R source code
required to simulate hypothetical data replications and compute the mixture weights 𝜓 for the
examples discussed in Section 4.

3.7. Summary
The procedure we propose may be summarized as follows:

(a) Choose a reference informative prior p(𝜃) and a noninformative prior q(𝜃).
(b) Choose a (possibly) sufficient statistic T(y).
(c) If mT (t) is not analytically tractable, draw prior predictive values yrep

1 ,… , yrep
n from m(y)

and obtain the simulated distribution of mT (t).
(d) Compute the P-value identified in Equation (3) and determine𝜓 as outlined in Equation (6).
(e) Carry out an analysis of the observed data assuming the reference mixture 𝜋(𝜃) = 𝜓q(𝜃) +

(1 − 𝜓)p(𝜃).
(f) If a prior–data conflict seems possible, consider using an alternative robust mixture

prior; adjust p(𝜃) to the predictive informative prior pT (𝜃), and use the predictive mixture
𝜋(𝜃) = 𝜓q(𝜃) + (1 − 𝜓)pT (𝜃), obtaining a new estimate for 𝜓 .

3.8. A Simple Example
We refer to the location normal model example which Evans & Moshonov (2006) discussed as
Example 1. Suppose y = (y1,… , yn) is sampled from a  (𝜃, 1) distribution, 𝜃 ∈ ℝ1, and the
two possible priors p and q are 𝜃 ∼  (𝜃0, 𝜏

2), and 𝜃 ∼  (𝜃0, c𝜏
2), c >> 0, respectively. The

sample mean T(y) = ȳ ∼  (𝜃, 1∕n) is the minimal sufficient statistic. As Evans & Jang (2011a)
show, the  (𝜃0, c𝜏

2) prior is weakly informative with respect to the  (𝜃0, 𝜏
2) prior when c > 1.

As Evans and Jang show, the prior predictive distribution of ȳ with respect to the prior p
is  (𝜃0, 𝜏

2 + 1∕n). Given the observed value T(y0) = t0, we want to assess whether or not this
value lies in one of the tails of the prior predictive distribution via the P-value:

Mp
T (m

p
T (t) ≤ mp

T (t0)) = 2(1 − Φ(|t0 − 𝜃0|∕(𝜏2 + 1∕n)1∕2)). (12)

We combine p and q in the mixture prior identified in Equation (4), and obtain the P-value

M𝜋
T (m

𝜋
T (t) ≤ m𝜋

T (t0)) = 2[1 − (𝜓Φ(|t0 − 𝜃0|∕(c𝜏2 + 1∕n)1∕2)

+ (1 − 𝜓)Φ(|t0 − 𝜃0|∕(𝜏2 + 1∕n)1∕2))]. (13)

We may adjust our reference informative prior and define the predictive informative prior
pT (𝜃) =  (ȳ, 𝜏2). To illustrate the benefits that derive from using our procedure, we simulate
two distinct samples for y, from  (0, 1) and from  (10, 1), respectively, with the following
parameter settings: n = 100, 𝜃0 = 0, 𝜏 = 4, c = 100; in addition, we fix 𝛼 = 0.25. The first

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11637
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2022 AVOIDING PRIOR–DATA CONFLICT 499

sample is fictitiously simulated under the assumption that there is no prior–data conflict between
our informative prior p and the data y, whereas the second sample is generated with the explicit
intention of a conflict with the informative prior centred at 0. For the first sample we obtain
Mp

T = 0.985 and 𝜓 = 0; thus, as we were expecting, a prior–data conflict does not occur. For
the second sample we obtain Mp

T = 0.01 for the informative prior, which indicates a prior–data
conflict. For the mixture prior 𝜃 ∼ 𝜓 (𝜃0, c𝜏

2) + (1 − 𝜓) (𝜃0, 𝜏
2), M𝜋

T = 0.25 with the weight
𝜓 estimated at 0.25; M𝜋

T = 1, 𝜓 = 0 for the mixture prior with the predictive prior in place of the
reference p, 𝜃 ∼ 𝜓 (𝜃0, c𝜏

2) + (1 − 𝜓) (ȳ, 𝜏2).
Even in the second sample, where a prior–data conflict occurs, adjusting the reference

informative prior is not strictly required: the starting informative prior p, when weighted
and combined with a diffuse prior, already prevents any prior–data conflict up to the fixed
threshold 𝛼.

4. APPLICATIONS

In this section we consider three distinct examples of regression models for which the mixture pri-
ors introduced in the previous section prove to be beneficial. Although complete/quasi-complete
separation in logistic regression is not strictly the cause of a prior–data conflict, nevertheless it
may be viewed as the implicit cause in a broader context in which default priors are often not
able to regularize the inferences and yield poor answers.

For simplicity and technical convenience, in each of the following examples we elicit the
standard normal  (0, 1) as the reference informative prior: rather than eliciting an actual
informative prior as in Al Labadi, Baskurt & Evans (2018), we are motivated to use one reference
prior and checking when it does cause prior–data conflicts. Of course, the impact of such a prior
varies in relation to the likelihood and the sufficient statistic (Gelman, Simpson & Betancourt,
2017).

To implement our procedure, we set 𝛼 = 0.05 and fixed the number of hypothetical data
replications required to compute the P-values identified in Equation (3) to be 103 in each
example. These values were chosen following some sensitivity tests. Computational steps and
other details may be found in the Supplementary Material, i.e.,R source code that accompanies this
article.

4.1. Logistic Regression and Separation
Experiments such as clinical trials may contain much historical information and the analyst may
rely on this source of past information, considering it as a sort of baseline for similar and future
studies. This is the underlying mechanism in Bayesian inference: given sequential observation of
the data points y1 and y2 collected at two distinct times t1 and t2, each with sampling distribution
p(y|𝜃), the posterior p(𝜃|y1) usually acts as the prior for the new data point y2, and the update is
then proportional to p(𝜃|y1, y2) ∝ p(𝜃|y1)p(y1, y2|𝜃).

Now consider the following imaginary—but realistic—situation typical of causal inference,
where the parameter 𝜃 represents the probability of contracting a particular disease. Suppose we
want to collect the binary response yi𝑗 , our dependent variable, where yi𝑗 = 1 if the ith subject in
the 𝑗th sample has the disease, and yi𝑗 = 0 otherwise. We suppose that for each selected subject
we also collect some individual predictors, xi𝑗 and zi𝑗 , say the plasma level of a protein of interest
and the sex of the subjects in the sample, respectively (zi𝑗 = 1 if the ith subject in the 𝑗th sample
is a male, 0 otherwise). We, the analysts, collect a total of five samples, each of length n = 100
during the year 2019 in the same hospital, assuming that there are no subjects’ ties: each sample
y1,… , y5 is associated with the predictors (x1, z1),… , (x5, z5). However, we immediately realize
a quasi-complete separation (Zorn, 2005; Gelman et al., 2008; Sauter & Held, 2016) scenario
arising in the fifth sample: each male in the fifth sample is not affected by the disease, regardless

DOI: 10.1002/cjs.11637 The Canadian Journal of Statistics / La revue canadienne de statistique

 1708945x, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.11637 by C

ochraneItalia, W
iley O

nline L
ibrary on [29/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



500 EGIDI, PAULI AND TORELLI Vol. 50, No. 2
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FIGURE 1: Logistic regression, five separate analyses with weakly informative priors: posterior
marginal distributions along with 50% intervals (light blue areas) from separate posterior
analyses of the coefficients 𝛽1, 𝛽2 across the five different experiments ( rstanarm package,

2000 iterations).

of the plasma level x5. Thus, one of the model’s covariates almost perfectly predicts the outcome
variable y5, i.e., yi5 = 0 if xi5 = 1, whereas yi5 can be 0 or 1 if xi5 = 0.

We are asked to perform a Bayesian logistic regression at the end of 2019, assuming that the
response probability pi𝑗 ≡ Pr(Yi𝑗 = 1) associated with the ith patient in the 𝑗th sample is

logit(pi𝑗) = 𝛼 + 𝛽1xi𝑗 + 𝛽2zi𝑗 ,

where logit(x) = log(x∕(1 − x)), x ∈ [0, 1]. As a preliminary attempt, we decide to perform
five logistic regressions treating each experiment as if it was independent of the others. Let
𝛽11, 𝛽12,… , 𝛽15 and 𝛽21, 𝛽22,… , 𝛽25 denote the regression parameters 𝛽1 and 𝛽2 associated with
plasma level and sex, respectively, which correspond to the five measurements. Figure 1 shows
the resulting posterior intervals (50% credibility areas are coloured in light blue) for 𝛽1 and
𝛽2 obtained with the R package rstanarm (Goodrich et al., 2018) using the default weakly
informative priors: 𝛽1, which is displayed in the left panel, is rather similar across the five
samples, whereas in the right panel of the same figure, 𝛽25 has the opposite sign to 𝛽21,… , 𝛽24,
due to separation.

Now consider fitting the Bayesian logistic regression for the fifth experiment conditional on
what we observed in the previous four experiments. Initially we decide to carry out our analysis
without worrying about separation in the data. If we are fully informative Bayesian analysts,
we should use the posterior derived from the four experiments as the new prior for the fifth
experiment, and then update the results. Otherwise, we could use a standard weakly informative
prior as suggested by Gelman et al. (2008) for the logistic regression, say a  (0, 102) for the
intercept and  (0, 2.52) for the parameters 𝛽1 and 𝛽2. Posterior 50% intervals and marginal
posterior distributions from the two analyses are reported in the top row of Figure 2. The
posterior distributions for the parameter 𝛽2 are completely different in the two frameworks.
It appears that the weakly informative prior favours the probability of no disease in males too
strongly. For a male subject (zi5 = 1), the estimated odds ratio that we obtain using the posterior
median is pi5∕(1 − pi5) = exp(−5.5) = 0.004; as we will see, we feel that this posterior estimate
could dramatically underestimate the probability of disease for a male subject, especially if this

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11637
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2022 AVOIDING PRIOR–DATA CONFLICT 501

(a) (b)

(c)

FIGURE 2: Logistic regression, fifth experiment: posterior marginal distributions along with
50% intervals (light blue areas) from analysis of the coefficients 𝛽1, 𝛽2 in the fifth experiment,
under (a) informative priors, (b) weakly informative prior and (c) mixture prior with reference

informative prior, where T(y, z) =
∑n

i=1 yi5zi5 = 0 and 𝜓 = 0.

result is used as prior information for future studies. Conversely, the informative prior for 𝛽2,
𝛽2 ∼  (0, 0.332), estimated from the first four experiments is likely to conflict with the data,
with an odds ratio of about 1.64 when zi5 = 1. We need something in between. To implement
our mixture prior

(a) First we need to choose the sufficient statistic with respect to 𝛽2: T(y, z) =
∑n

i=1 yi5zi5 has
observed value T(y0, z0) = 0 for the fifth experiment.

(b) Run our source code to (i) draw hypothetical values from m(y|�̂�, 𝛽1, 𝛽2), with �̂� and 𝛽1
consistent estimates for 𝛼 and 𝛽, and (ii) compute the weights. We obtain 𝜓 = 0, meaning
no weight is associated with the prior q.

(c) Choose p(𝛽2) =  (0, 1), q(𝛽2) =  (0, 2.52).

DOI: 10.1002/cjs.11637 The Canadian Journal of Statistics / La revue canadienne de statistique
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502 EGIDI, PAULI AND TORELLI Vol. 50, No. 2

(d) Run the Bayesian logistic regression with the following mixture prior for
𝛽2: 𝛽2 ∼ 𝜓 (0, 2.52) + (1 − 𝜓) (0, 1).

(e) In such a case, since T(y0, z0) = 0, the predictive informative prior pT (𝛽2) coincides with
the reference informative prior p(𝛽2).

The 50% posterior intervals and marginal posterior distributions from our procedure are displayed
in the lower panel of Figure 2. The posterior interval for 𝛽2 is sensibly narrower than the same
interval under the weakly informative prior; moreover, the posterior median, about −3.5, makes
more sense since it represents a compromise between the median for 𝛽2 under the strongly
informative analysis (about 0.5) and the same under the weakly informative analysis (about
−5.5). As a further confirmation, the odds ratio for a male is about 0.03 under the mixture
prior, somehow lying between the unrealistic value 0.004 (weakly informative prior) and 1.64
(informative prior).

As a final comment, we feel that our procedure is even more robust than the weakly
informative prior in case of separation arising in logistic regression. In this case, the standard
normal prior absorbs the information required to obtain meaningful posterior estimates, and thus
there is no need to use the adjusted predictive prior.

4.2. A Bioassay Experiment
We consider now a well-known small-sample experiment previously analyzed by Racine et al.
(1986) and Gelman et al. (2008), in which the choice of a prior may strongly affect the final
inference. Table 1 summarizes the data collected from 20 animals that were exposed to four
different doses of a toxin, where xi represents the ith of k dose levels, measured on a logarithmic
scale, given to ni animals, of which yi died. We assume the typical binomial model

yi|pi ∼ Bin(ni, pi),

where pi represents the probability of death for animals given dose xi, and

logit(pi) = 𝛼 + 𝛽xi.

As suggested by Racine et al. (1986), prior information may be available either in the form of the
results of a previous experiment using the same substance or in the form of assessments elicited
from one or more expert toxicologists.

When the sample size is small, the role of the prior may be particularly relevant. In
this application, we want to combine two aspects of the prior specification. On one hand,
the prior should not be in conflict with the observed data. Nonetheless, a Bayesian model
should always be generative, and simulations from the prior predictive distribution should be
reasonable.

Consider first the scenario where substantial information may not be incorporated in
the prior, leading to the elicitation of weakly informative priors, namely 𝛼 ∼  (0, 102) and
𝛽 ∼  (0, 2.52). The log(dose) is rescaled to have mean 0 and standard deviation 0.5. As is
evident from Figure 3a, where we have displayed four predictive intervals, one for each of the
four values of x, fake data generated under these priors are meaningless in this small-sample
application: the intervals range from 0 to 5, covering the entire support of the observed data,
and posterior medians are constant with respect to x. Thus, even in the absence of substantial
prior information, weakly informative priors are too vague in this context and do not yield
useful replications under the assumed prior marginal distribution. The same result is obtained
for the reference informative prior  (0, 1) (Figure 3b) for the same bioassay experiment.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11637
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2022 AVOIDING PRIOR–DATA CONFLICT 503

TABLE 1: Bioassay experiment: xi is the dose (log g/ml), ni the number of animals and yi the number of
deaths.

Dose xi Animals ni Deaths yi

−0.86 5 0

−0.30 5 1

−0.05 5 3

0.73 5 5

(a)

(c) (d)

(b)

FIGURE 3: Bioassay experiment: medians (light red dots) and predictive intervals from the prior
marginal distribution against the observed yi (dark red dots), where 𝛼 ∼  (0, 102), assuming
for 𝛽 (a) weakly informative prior, (b) informative prior, (c) mixture with reference informative
prior, where 𝜓 = 0.5 and (d) mixture with predictive prior, where T(y, x) =

∑
xiyi = 3.24 and

𝜓 = 0.3.
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 1708945x, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.11637 by C

ochraneItalia, W
iley O

nline L
ibrary on [29/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



504 EGIDI, PAULI AND TORELLI Vol. 50, No. 2

TABLE 2: Prostate dataset: list of covariates.

Variable Description

lpsa Level of prostate-specific antigen

lcavol Log(cancer volume)

lweight Log(prostate weight)

age Age

lbph Log(benign prostatic hyperplasia amount)

svi Seminal vesicle invasion

lcp Log(capsular penetration)

gleason Gleason score

pgg45 Percentage Gleason scores 4 or 5

Evans & Jang (2011a) (see Figure 4a in their paper) have suggested that this reference
informative prior is not more informative than  (0, 2.52) and could instead be considered
the standard noninformative prior for this problem when one focuses on the probabilities
instead of the regression coefficients (Al Labadi, Baskurt & Evans, 2018). Moreover, even if
Pq(t0) = 0.1073 when q(𝛼, 𝛽) =  (0, 102) × (0, 2.52) according to Evans & Jang (2011a),
the degree of prior–data conflict raised by the weakly informative q(𝛼, 𝛽) and the informative
prior q(𝛼)p(𝛽) =  (0, 102) × (0, 1) amounts in our case to 0.021 and 0.023, respectively.
This misalignment with their result is justified by the fact that they use mT to compute the
P-value Pq(t0) identified in Equation (3), whereas we use the pseudo-prior predictive distribution
m(t|�̂�, 𝛽) specified in Equation (11), with �̂� estimated from the data. As Figure 3a,b shows, both
these priors are far from the data, they are centred at zero, and this choice means the binomial
model in this small-sample scenario cannot fulfill its generative function when these priors are
chosen.

We need perhaps a prior able to regularize the inferences and to provide plausible replications
from the prior predictive distribution in the context of small datasets. To implement the mixture
prior that we advocated in Section 3, we need a sufficient statistic for the model, such as
T(y, x) = (

∑4
i=1 xiyi,

∑4
i=1 yi). Thus, we need to estimate the weight 𝜓 such that the mixture prior

does not lead to a prior–data conflict. Using the reference mixture prior 𝛽 ∼ 𝜓q(𝛽) + (1 − 𝜓)p(𝛽)
(see Figure 3c), where q(𝛽) =  (0, 2.52), p(𝛽) =  (0, 1), the estimated weight is𝜓 = 0.5, which
does not improve the situation. Thus, our reference informative prior p(𝛽) is not generative,
and hence is not very informative with respect to the parameter 𝛽, and is therefore likely to
lead to a prior–data conflict. In such a situation, we definitely need to use the predictive infor-
mative prior, 𝛽 ∼ 𝜓 (0, 2.52) + (1 − 𝜓) (

∑4
i=1 xiyi, 1). The predictive intervals displayed in

Figure 3d, where 𝜓 = 0.3, are now narrower, and the posterior medians clearly vary with the
different dose levels, replicating the pattern observed in the original data.

Marginal posterior distributions and posterior 50% intervals for 𝛽 that were obtained using
weakly informative, reference mixture, and predictive mixture priors are displayed in Figure 4;
the distributions obtained under weakly informative and reference mixture coincide, whereas the
marginal posterior under the predictive mixture prior yields narrower posterior intervals. In such
a case, the reference prior  (0, 1) is not able to regularize the estimates, and using the predictive
mixture prior is clearly preferable.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11637
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FIGURE 4: Bioassay experiment: marginal posterior distribution and posterior 50% intervals for
𝛽 under weakly informative, reference mixture, and predictive mixture priors (see the text for

the details).

4.3. Linear Regression with Multiple Predictors
The dataset Prostate in the R package lasso2 was used by Stamey et al. (1989) and
Tibshirani (1996) to investigate the correlation between the level of prostate-specific antigen and
other covariates for men who were about to undergo a radical prostatectomy. See Table 2 for
a full list of the covariates. We assume a simple linear model for the response measurement yi
representing the amount of prostate-specific antigen as the dependent variable:

yi = 𝛽1 +
p∑

𝑗=1

𝛽𝑗+1xi𝑗 + 𝜖i, 𝜖i ∼  (0, 𝜎2), i = 1,… , n. (14)

The variate xi𝑗 denotes the value of the 𝑗th covariate for the ith unit, and each 𝛽𝑗 is an unknown
regression coefficient.

A natural first approach here is to use LASSO (least absolute shrinkage and selection operator)
regression as developed in Tibshirani (1996) to shrink toward zero a subset of coefficients that
are not associated with influential predictors. LASSO estimates ± standard errors are displayed
in Figure 5; the coefficients 𝛽4, 𝛽5, 𝛽7, 𝛽8 and 𝛽9, associated with age, lbph, lcp, gleason and
pgg45, respectively, are shrunk toward zero. The plot reveals a possible identifiability problem
with the intercept 𝛽1, which has a standard error that is large when compared with the standard
errors of the other regression coefficients. A rough solution could be to drop the intercept term
from the model, but this could yield undesirable effects in the global model and, in general, a
lack of interpretation for the remaining coefficients.

4.3.1. Weakly informative priors
Following Gelman et al. (2008), we assigned weakly informative priors to each of the coefficients
in the regression: the intercept 𝛽1 ∼  (0, 102), whereas 𝛽𝑗 ∼  (0, 2.52) for 𝑗 = 2,… , 9,
and 𝜎 ∼ Exponential(1). We fit the model with the rstanarm package, specifying 2000
Hamiltonian Monte Carlo simulations and checking the convergence of the Markov chains using
the Gelman–Rubin statistic R̂ (R̂ ≤ 1.1 for all the parameters). Figure 6a displays the resulting
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FIGURE 5: LASSO estimates for 𝛽 (estimate ± standard error) parameters, Prostate dataset.
Model fit obtained via the R package lasso2.

posterior intervals for the components of the 𝛽 vector; the Bayesian model with underlying
weakly informative priors for the regression coefficients results in posterior interval estimates
that are rather similar to the corresponding LASSO-based intervals. The regression coefficients
𝛽4, 𝛽5, 𝛽7, 𝛽8 and 𝛽9, associated with age, lbph, lcp, gleason and pgg45, respectively, are
all shrunk toward zero, whereas 𝛽2, 𝛽3 and 𝛽6, associated with lcavol, lweight and lbph,
respectively, are greater than zero. The estimate of the intercept 𝛽1 reveals a problem; the
parameter is not identifiable. The suspicion here is that a prior–data conflict arose with respect to
the parameter 𝛽1, and the data are not fully informative. To fix the conflict and properly estimate
the intercept, we need a suitable remedy.

4.3.2. Mixture priors
We now must choose the informative and the diffuse prior. For the latter, we end up selecting
the same weakly informative prior  (0, 102) used in the previous analysis; for the former, we
start with a reference standard normal prior  (0, 1), and then eventually update it using the
procedure we described in Section 3.7.

To implement the mixture prior, we refer to Equation (10) and consider the pseudo-prior
predictive distribution m(y|𝛽2, 𝛽3,… , 𝛽9). The main steps are the following:

(a) Choose the sufficient statistic, T(x, y) = XTy, where X is the n × (p + 1) predictor matrix.
(b) Run our source code to sample hypothetical replications from m(y|𝛽2, 𝛽3,… , 𝛽9) under the

pseudo-prior predictive distribution and estimate 𝜓 . We obtain 𝜓 = 0.
(c) Run the linear regression with the reference mixture prior 𝛽1 ∼ 𝜓 (0, 102) +

(1 − 𝜓) (0, 1).
(d) Consider the predictive prior distribution pT (𝛽1) =  (ȳ∕�̂�2, 1), where �̂�2 denotes an

estimate for 𝜎2. From the LASSO model, we obtained �̂�2 = 0.52.
(e) Carry out the linear regression with 𝛽1 ∼ 𝜓 (0, 102) + (1 − 𝜓) (ȳ∕�̂�2, 1); the estimated

value of 𝜓 was equal to 0.

Figure 6b displays the resulting posterior intervals for the 𝛽 parameters that we obtained
using the reference mixture prior 𝛽1 ∼ 𝜓 (0, 102) + (1 − 𝜓) (0, 1), with 𝜓 = 0. The interval

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11637
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FIGURE 6: Posterior 50% intervals (dark blue segments) and 95% intervals (light blue segments)
for 𝛽 parameters of the multiple linear regression model for the Prostate dataset. 𝛽2,… , 𝛽9 ∼
 (0, 2.52). The intercept 𝛽1 is assigned: (a) weakly informative prior, (b) mixture prior, 𝜓 = 0
and (c) predictive mixture, 𝜓 = 0. rstan package (Stan Development Team, 2018a), 2000

HMC iterations.

for the intercept is narrower than the corresponding interval estimate that we obtained using
the weakly informative prior. Clearly, the estimate of 𝛽1 is more stable. Figure 6c displays the
posterior intervals for the 𝛽 parameters under the predictive mixture prior 𝛽1 ∼ 𝜓 (0, 102) +
(1 − 𝜓) (ȳ∕�̂�2, 1), with 𝜓 = 0. Evidently, the posterior estimates for the regression coefficients
𝛽2,… , 𝛽9 are almost unchanged with respect to LASSO, weakly informative, and reference
mixture analyses. However, the intercept 𝛽1 is now estimated with much more precision, and
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the 95% posterior interval does not contain zero. Somehow, we added the essential information
required to estimate 𝛽1, and we checked that this information was actually relevant by simulating
hypothetical data from m(y|𝛽2, 𝛽3,… , 𝛽9). As a final remark, we feel that choosing to assign
weakly informative priors may not prevent poor estimation when there is a (partial) lack of
information in the observed data.

5. DISCUSSION

How to proceed once a prior–data conflict is detected is a tricky question to answer. Moreover,
there are no automatic procedures for dealing with an eventual lack of robustness of the posterior
estimates and also with a lack of parameter identifiability that arises from the marginal posterior
distributions. However, the prior is an essential tool for regularizing inferences. To achieve
these goals, we proposed a two-component mixture model that combines an informative and a
noninformative prior such that a prior–data conflict between the data and the informative prior
is avoided. Our approach is based on the prior–data conflict measures developed by Evans &
Moshonov (2006) and offers a new insight into a reasoned elicitation. If the mixture prior is not
capable of fixing the issue, we are able to extend the method and consider a predictive prior in
place of the reference informative prior chosen before the experiment. We justify our proposed
priors by providing theoretical tools that measure the degree of informativity with respect to a
reference informative prior. In terms of a broader interpretation, the family of mixture priors
{𝜓q(𝜃) + (1 − 𝜓)p(𝜃);𝜓 ≥ 0} represents a natural hierarchy of priors before seeing the data;
distinct priors can be identified as 𝜓 varies.

As motivated by the applications, this class of priors could be beneficial for regression models
where prior–data conflicts may arise with respect to a subset of parameters, and the resulting
inference may be misleading if the priors are even slightly misspecified. Generally speaking, use
of our proposed mixture of priors seems to regularize the inference in a broad sense, not just in
the case when a prior–data conflict arises.

One major concern in our method is that we advocate choosing data-dependent priors.
However, data-dependent priors are widely used in applied statistics with convincing motivations
(Wasserman, 2000; Gelman et al., 2008; Goodrich et al., 2018), and we feel our mixture prior
𝜓 q(𝜃) + (1 − 𝜓)p(𝜃) somehow depends on the observed data in a marginal sense; the mixture
weight 𝜓 is chosen using a prior-predictive check that is carried out before the model is
fitted (Box, 1980; Gabry et al., 2019). In addition, this prior-predictive check is the same tool
adopted by Evans & Moshonov (2006) and Evans & Jang (2011a) to assess whether or not
a prior–data conflict has arisen and, if so, to replace the prior. Thus, as argued by Gelman
et al. (2008), we do not believe that the dependence of our prior distribution on the observed
data represents a major concern, because the inferential conclusions are derived from proper
posteriors.

Further research is warranted to implement our proposed approach in more complex settings,
such as hierarchical models, and to provide appropriate computational software that is easy to
use with such a choice of prior. Some tools for checking the robustness of our proposed approach
would also be desirable.
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APPENDIX

Proof of Theorem 1
Proof. The numerator of rp𝜋 is equal to

Mp
T (P

p(t0) ≤ x𝛾 ) − Mp
T (P

p(t0) ≤ x𝛾 − 𝜓(Pq(t0) − Pp(t0)))

= x𝛾 − x𝛾 + 𝜓(Pq(t0) − Pp(t0))

= 𝜓(Pq(t0) − Pp(t0))

≡ 𝛿pq,

where the first equality holds since Pp(t0) is uniformly distributed when t0 ∼ Mp
T . Then,

rp𝜋 > 0 ⇔ 𝛿pq > 0, which happens when 𝜓 > 0 and Pq(t0) − Pp(t0) > 0. ◼
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