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Abstract
Two main approaches are considered when building statistical models for football out-
comes: (1) the goal-based approach, where the number of goals scored by two compet-
ing teams is modelled, and (2) the result-based approach, where a three-category outcome 
(win–draw–loss) is modelled. The debate about which approach is preferable is still ongo-
ing, although the general agreement is that any direct comparison between the forecasting 
abilities of the two approaches should be based on the quality of the forecasts. Alterna-
tively, a greater emphasis can be given to diagnostic measures in order to judge the qual-
ity of model specifications, as is more customary in statistical modelling. In this paper, 
we develop a broad comparison of four possible Bayesian models, focusing on model 
checking and calibration and then using Markov chain Monte Carlo replications to explore 
the predictive performance over future matches. Although inconclusive, we believe our 
set of comparison tools may be beneficial for future scholars in differentiating the two 
approaches.

Keywords  Football results · Forecasting · Goodness of fit · Predictive performance · 
MCMC

1  Introduction

The outcome of a football match may be modelled according to two distinct perspectives.
The goal-based approach implies modelling via suitable count distribution, the num-

ber of the goals scored and conceded by the teams in each match. In the literature, we 
mainly recognize three types of goal-based Poisson models: double Poisson (Maher 1982; 
Baio and Blangiardo 2010; Groll and Abedieh 2013; Egidi et al. 2018), bivariate Poisson 
(Dixon and Coles 1997; Karlis and Ntzoufras 2003), and Poisson difference/Skellam (Kar-
lis and Ntzoufras 2009). Once a model has been estimated, the derivation of the so-called 
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three-way process (home win, draw, away win) can be obtained by aggregating the esti-
mated probabilities.

The result-based approach consists of modelling directly the three-way process, by use 
of ordered probit (Koning 2000) or logit (Carpita et  al. 2015, 2019) regression models. 
This second framework is nested within the first one: the result of a football match is estab-
lished from the goals scored and conceded, while knowledge of the simple three-way result 
says nothing about the number of the goals scored by the two teams.

Result-based models have a simpler structure, require fewer parameters, and avoid any 
assumption about the goals’ interdependence; however, they could dramatically underesti-
mate/overestimate the actual strength of a team, since matches concluded on scores of 1–0 
and 5–0 are of equal value. After extensive debate, Goddard (2005) asserted that any direct 
comparison between the forecasting abilities of the two types of models must be based on 
forecasts of match results. However, few studies have compared these two perspectives in 
terms of goodness of fit and calibration in addition to predictive performance on a test set.

From a predictive viewpoint, we should always choose the model that yields the best 
predictions, according to some well-chosen metrics. Although it sounds appealing, this 
cannot be the sole preference: can we trust a model that gives poor predictions of the 
group stages of the World Cup but, surprisingly, gives accurate predictions of the knockout 
stages? Perhaps not. Rather, we should select a model, or a class of models, after extensive 
analysis of its performance, both in terms of goodness of fit and forecasting abilities.

The number of goals in a match represents an example of paired count data which are, 
in fact, also used in social sciences to build social rankings and to measure relative prefer-
ences assigned to certain objects or items, with the aim of ordering objects on a prefer-
ence scale according to an attribute. The attributes are usually based on subjective evalua-
tions of properties of the objects (e.g., tastiness of food, beauty of owers, perceived risk of 
portfolios) or on “objective” outcomes under some predefined rules (e.g., strength of foot-
ball teams, quality of scientific journals, etc.). The R package prefmod (Hatzinger and 
Dittrich 2012) presents some preference models, by extending the Bradley–Terry (Brad-
ley and Terry 1952) and Thurstone–Mosteller (Thurstone 1927; Mosteller 2006) models, 
to predict the outcome of pairwise comparisons by using continuous distributions for the 
pairwise difference. Responses to Likert-type items, often called ratings, are another form 
of data collection to obtain preference orderings (Dittrich et al. 2007).

The issue of modelling paired count data is relevant for many other fields connected to 
social sciences. In our opinion a broad comparison of these discrete models, based on pre-
dictive accuracy and diagnostic measures, may be beneficial not only for analysing football 
data but also for a broader audience consisting of epidemiologists, biologists, and psychol-
ogists. Examples of models similar to those here considered are in Karlis and Ntzoufras 
(2006), Böhning et al. (1999) and Davison (1992) and, with specific application to predict-
ing football results, in Ley et al. (2019). Whenever paired comparisons are required, the 
finer the set of tools to discern among the distinct models, the better is the choice for the 
analyst.

In this paper, we develop a broad comparison of four possible Bayesian models using 
the data from the FIFA World Cup 2018 hosted in Russia; we focus on the model pos-
terior checking and calibration (Gelman et  al. 2013), and then use Markov chain Monte 
Carlo (MCMC) (Robert and Casella 2013) replications to explore predictive performance 
for future matches. Although inconclusive, we believe our comparison review may be ben-
eficial for future scholars to differentiate between the goal-based and result-based mod-
els. The answer, as emerges in this paper, may not be unique, perhaps even controversial, 
and the choice of the final model is left to the analyst’s expertise. This paper does not 
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emphasize on selecting the best model, but on the ‘bag of tools’ required to select a good 
model, consisting of posterior predictive checks, predictive information criteria, probabil-
ity scores, and, more generally, predictive accuracy diagnostics.

The rest of the paper proceeds as follows. In Sect. 2, we propose four distinct Bayesian 
models, two of them are goal-based, and two are result-based. Posterior predictive check-
ing is introduced in Sect. 3, whereas a variety of predictive accuracy measures is presented 
in Sect. 4 along with graphical visualization. Section 5 concludes.

2 � Models

2.1 � Multinomial Models

Let zn ∈ {1, X, 2} denote the observed categorical result for the n-th match, n = 1,… ,N , 
where {1, X, 2} hereafter denotes the three-way process for the home team win, the draw, 
and the away team win, respectively. Within the World Cup framework detailed in Sect. 3, 
‘Home’ and ‘Away’ do not have particular meanings attached to them, they simply distin-
guish the two competing teams and maintain consistency with the statistical football litera-
ture. A multinomial model for the categorical random variable Zn is assumed:

where �n = (�n1,�nX ,�n2) is the vector of match probabilities, and �n = (�n1, �n2) is the 
vector of linear predictors for the home and the away team, respectively, defined as:

where � is the common baseline parameter; the parameters attT and defT represent the 
attack and the defence abilities, respectively, for each team T, T = 1,… ,NT ; the nested 
indexes hn, an = 1,… ,NT denote the home and the away team playing in the n-th game, 
respectively; the predictor wn = (rankhn − rankan ) is the difference of the FIFA World 
Rankings1—expressed in FIFA ranking points divided by 103—between the home and the 
away team in the n-th game, evaluated here through a function f (⋅) , and multiplied by a 
parameter �∕2 . This last term tries to correct for the ranking difference occurring between 
two competing teams. To allow for this, possible functions are f1(wn) = |wn|−1 along with 
v1 = − 1 or the identity function f2(wn) = wn along with v1 = 1 . f1 increases (decreases) as 

(1)

Zn��n ∼ ��������(1,�n), n = 1,… ,N

�n1 =
exp{�n1}

1 +
∑2

j=1
exp{�nj}

�n2 =
exp{�n2}

1 +
∑2

j=1
exp{�nj}

�nX =
1

1 +
∑2

j=1
exp{�nj}

,

(2)
�n1 = � + atthn + defan + v1

�

2
f (wn)

�n2 = � + attan + defhn −
�

2
f (wn),

1  https​://www.fifa.com/fifa-world​-ranki​ng/.

https://www.fifa.com/fifa-world-ranking/
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the ranking difference wn decreases (increases), and the factor �
2
f1(wn) is then subtracted 

from both the equations in Eq. (2) to increase the draw probability as the teams are closer. 
This first function tries to correct for the well-known phenomenon of draw inflation [see, 
for instance, Karlis and Ntzoufras (2003)], favouring the draw occurrence when teams are 
close to each other in the FIFA rankings. Instead, f2(wn) increases as the ranking difference 
wn increases, and the factor �

2
f2(wn) is added to the “home” team and subtracted from the 

“away” team. This second function aims at giving more weight to the marginal winning 
probabilities for the first or second team by adding or subtracting a positive factor, respec-
tively. As explained in Sect. 2.3, � will be assigned a weakly informative Gaussian distribu-
tion to account for any possible real value. In the rest of the paper, the multinomial models 
will be referred as Multinomial and Multinomial 2 depending on the function f.

2.2 � Poisson Models

Let (xn, yn) denote the observed number of goals scored by the home and the away team 
in the n-th game, respectively. A simple double Poisson model implies for each match 
n = 1,… ,N the following specification:

where �1n, �2n represent the scoring rates for the home and away team, respectively; all the 
other parameters have the same interpretation as in Sect. 2.1. Including positive parametric 
goals’ dependence is made possible by using a bivariate Poisson distribution (Karlis and 
Ntzoufras 2003). In such a framework, the numbers of goals are jointly modelled:

where E(Xn) = �1n + �3n, E(Yn) = �2n + �3n , and cov(Xn, Yn) = �3n ; �3n acts as a measure 
of dependence between the goals scored by the two competing teams.

2.3 � Priors and Constraints

As a matter of parameters’ interpretation, once the models have been estimated the larger is 
the team-attack parameter, the greater is the attacking quality for that team; conversely, the 
lower is the team-defence parameter, the better is the defence power for that team.

For each team T = 1,… ,NT , attack and defence parameters are assigned weakly 
informative priors (Gelman et al. 2008):

(3)

Xn|�1n ∼ �������(�1n)

Yn|�2n ∼ �������(�2n)

log(�1n) = � + atthn + defan +
�

2
wn

log(�2n) = � + attan + defhn −
�

2
wn,

(4)

(Xn, Yn|�1n, �2n, �3n) ∼ ����������(�1n, �2n, �3n)

log(�1n) = � + atthn + defan +
�

2
wn

log(�2n) = � + attan + defhn −
�

2
wn

log(�3n) = �0,
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where N(�, �) is the notation adopted for a Gaussian distribution with mean � and standard 
deviation � , whereas ������+(0, �) is the half-Cauchy distribution with location zero and 
scale � . As explained by Gelman (2006), the half-Cauchy distribution for the scale param-
eter in a hierarchical model is likely to not affect the posterior estimates, is flexible, and has 
a better behaviour near 0. The value of 10 for the standard deviation of �att,�def has been 
chosen to account for possible broad values for the global attack/defence mean parameters. 
Different values have been tested and nothing changed in terms of posterior results. To 
achieve identifiability, these parameters are imposed a “sum-to-zero” constraint (Baio and 
Blangiardo 2010):

The parameter � associated with the ranking difference is assigned a weakly informa-
tive Gaussian prior, whereas the parameter �0 modelling the goals’ correlation in Eq. (4), 
defined on ℝ+ (only positive correlation), is assigned a half-Gaussian prior allowing for 
extreme values:

The standard deviations set to 2 and 5 for � and �0 , respectively, have been chosen in 
accordance with weakly informative criteria and only upon some sensitivity tests.

3 � Posterior Estimates and Model Checking

The models introduced in Sect.  2 were fitted on the dataset containing the results of all 
the 64 tournament’s matches (48 of the group stages, and 16 of the knockout stage) for 
the FIFA World Cup 2018. The value of the FIFA ranking difference w incuded in the 
models was considered on June 7th, only a few days before the tournament commenced. 
Model fit has been obtained by use of the R (R Core Team 2018) package rstan (Stan 
Development Team 2018) relying on Hamiltonian Monte Carlo sampling, whereas chains’ 
convergence was monitored via the Gelman–Rubin statistics (Gelman and Rubin 1992), as 
suggested by Gelman et al. (2013). The main advantage of using Stan over the traditional 
MCMC automatic tools relying on Gibbs sampling, such as JAGS (Plummer 2003) and 
WinBUGS (Lunn et al. 2000), is its efficiency in exploring the joint posterior distribution, 
especially in cases where the posterior has some irregularities. Moreover, the main com-
putational appeal is that Stan is very well connected with other tools, such as the packages 
bayesplot (Gabry and Mahr 2019) and loo (Vehtari et al. 2019), which may be used to 
depict posterior plots and to retrieve predictive information criteria, respectively. We fitted 
the models at each World Cup stage, using: the first group stage matches as the training set 

(5)

attT ∼ N(�att, �att)

defT ∼ N(�def, �def)

�att, �def ∼ ������+(0, �)

�att,�def ∼ N(0, 10),

NT∑

T=1

attT = 0,

NT∑

T=1

defT = 0.

(6)� ∼ N(0, 2)

(7)�0 ∼ N
+(0, 5).
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to predict the matches of the second group stage, then the first and the second group stage 
matches to predict the matches of the third group stage, and so on until the finals.

Once the models have been estimated, the next step is to provide some goodness of 
fit measures. Posterior predictive checking (Gelman et al. 2013) is the main tool to check 
whether a Bayesian model is able to produce replications as closely as possible to the 
observed data. The idea is to generate hypothetical replications yrep from the posterior pre-
dictive distribution p(yrep|y) = ∫ �(�|y)p(yrep|�)d� , where �(�|y) is the posterior distribu-
tion and p(yrep|�) is the likelihood function for hypothetical values. Rarely is this distribu-
tion analytically tractable, for such a reason we need a two-steps simulation at each MCMC 
iteration to (a) generate � from �(�|y) ; (b) generate yrep from p(yrep|�) . Figure 1 displays 
the true data distribution (dark pink) plotted against the replicated MCMC distributions 
(light pink) for the four models considered in Sect. 2. For the multinomial models [panel 
(a) and (b)], the dependent variable is the categorical random variable taking values in 
{1, X, 2} , whereas in the Poisson models [panel (c) and (d)], the variable considered in 
the plot is the goal difference X−Y  . The latter models seem to suggest a better agreement 
of the replications to the observed values, displaying a non-negligible peak of probability 
mass around zero, occurring for the draws; the replicated distributions for the multinomial 
class of model appear slightly noisier.

4 � Predictive Performance

4.1 � Posterior Matches Probabilities

Bayesian models easily retrieve posterior probabilities for future matches by using MCMC 
simulations from the posterior predictive distribution for future values. Denoting with ỹ a 
future observable value, the posterior predictive distribution is p(ỹ|y) = ∫ 𝜋(𝜃|y)p(ỹ|𝜃)d𝜃 . 
Table 1 shows posterior probabilities under each model for the three-way process {1, X, 2} 
of the 16 matches of the knockout World Cup stage (round of 16, quarter of finals, sem-
ifinals, finals). For each model, red cells denote the highest probabilities when not cor-
responding to the observed results (considering that there will be a result in the regular 
90 min), whereas light green cells denote the highest probabilities when corresponding to 
the observed results. The best overall probabilities for the observed results across all the 
four models are marked in dark green. The qualified teams are marked in bold characters. 
Distinct knockout stages (round of 16, quarter of finals, semifinals, and finals) are sepa-
rated by a solid horizontal line. The table shows that there is no model that clearly domi-
nates the remaining ones: rather, the models tend to behave similarly for many matches, 
such as Sweden–Switzerland, Colombia–England, France–Belgium, and the two finals 
France–Croatia and Belgium–England.

However, these three-way probabilities may suffer from some inefficiencies when two 
teams have high scoring abilities: in such situations, the exact result in terms of the goals 
scored by the two teams may be preferred to the three-way process {1, X, 2} . Poisson mod-
els may be used to depict a grid plot of the posterior probabilities for the exact results as 
in Fig. 2. For each model, darker regions are associated with higher posterior probabilities 
and red squares correspond to the observed results. It is worth noting that black regions 
do not correspond to the same probability scale values across the two models, they just 
denote the most likely results. For the first match, France versus Croatia (top row), the 
observed final result (4–2) was unlikely under both the double and the bivariate Poisson 
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model; however, taking the lower (upper) triangular matrix of results and summing all the 
cells, we may obtain the posterior probability of a France (Croatia) win. For the second 
final, Belgium versus England, the observed result (2–0) had a non-negligible posterior 
probability, approximately 0.06, under both the Poisson models. However, some further 
considerations deserve a quick attention. The plots above, even when the observed result is 
unlikely under the posterior predictive distribution, have the advantage to depict the whole 
posterior uncertainty and, then, to provide a glimpse about the win–draw–loss process 
starting from the single exact results. The result 4–2 between France and Croatia having a 
posterior probability to happen approximately equal to zero is not that relevant, since this 
issue is well-known among football modellers: rather, we could have many concerns in a 
model assigned to the 4–2 result a very high probability. In order to be fully transparent, we 
feel these plots should be displayed for each of the out-of-sample matches.

Fig. 1   Posterior predictive checks for the true data distribution (dark pink) plotted against the replicated 
MCMC distributions (light pink), for the four considered models: multinomial with f (wn) = |wn|−1 , mul-
tinomial with f (wn) = wn , double Poisson and bivariate Poisson. In the top-row plots, y is the categorical 
three-way process, the x-axis denotes the three possible results {1,X, 2} only, and the y-axis depicts the 
values for the posterior predictive distribution. In the bottom-row plots, y is the goal-difference between the 
home and away team, in the x-axis, there are the discrete values for the goal-difference, whereas the y-axis 
depicts the values for the posterior predictive distribution. The plots have been obtained by running 2000 
Hamiltonian Monte Carlo (HMC) iterations with rstan package, and then using the bayesplot pack-
age, which always provides a continuous approximation for discrete distributions. (Color figure online)
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4.2 � Pseudo‑R2

One way to assess predictive performance over any number of matches is the pseudo-R2 , 
defined as the geometric mean of the probabilities assigned to the actual result of each 
match played during the forecast period (Dobson et al. 2001):

where M is the number of future matches for which forecasts were generated, and pm is 
the estimated probability to observe the actual result of the match m. The left plot in Fig. 3 
shows the pseudo-R2 computed for each World Cup stage under the four considered mod-
els: multinomial models perform quite poorly in the first phases, but their performance 
starts to improve after the 3rd group stage. This may be because usually, at later stages, 
each match involves teams with closer scoring abilities (or FIFA rankings) than in for-
mer stages. Therefore, it is safer to predict only the overall outcome. Conversely, Poisson 
models perform better in the first group stage than in the knockout stage. All four models 
perform well for the final (France vs. Croatia), giving greater probability for a France win.

(8)pseudo-R2 = (p1p2 … pM)
1∕M ,

Table 1   Posterior match probabilities for the 16 matches of the knockout stage: round of 16, quarter of 
finals, semifinals, finals

Multin Multin 2 double Pois. biv. Pois
Team1 Team2 1 X 2 1 X 2 1 X 2 1 X 2 Obs.
France Argentina 0.61 0.05 0.34 0.42 0.36 0.22 0.41 0.30 0.29 0.40 0.29 0.31 4-3 (1)
UruguayPortugal 0.43 0.27 0.30 0.28 0.38 0.34 0.30 0.28 0.40 0.31 0.29 0.40 2-1 (1)
Spain Russia 0.38 0.33 0.29 0.54 0.31 0.15 0.49 0.23 0.28 0.47 0.25 0.28 1-1 (X)
Croatia Denmark 0.50 0.18 0.32 0.36 0.38 0.26 0.39 0.31 0.30 0.38 0.30 0.32 1-1 (X)
Brazil Mexico 0.46 0.24 0.30 0.54 0.28 0.18 0.53 0.27 0.20 0.51 0.28 0.21 2-0 (1)
Belgium Japan 0.50 0.27 0.23 0.70 0.23 0.07 0.63 0.23 0.14 0.62 0.22 0.16 3-2 (1)
Sweden Switz. 0.32 0.28 0.40 0.23 0.36 0.41 0.32 0.28 0.40 0.32 0.28 0.40 1-0 (1)
Colombia England 0.45 0.07 0.48 0.34 0.24 0.42 0.32 0.27 0.41 0.32 0.28 0.40 1-1 (X)
Uruguay France 0.41 0.28 0.31 0.32 0.32 0.36 0.32 0.31 0.38 0.32 0.31 0.37 0-2 (2)
Brazil Belgium 0.33 0.26 0.41 0.34 0.31 0.35 0.39 0.29 0.32 0.39 0.30 0.31 1-2 (2)
Sweden England 0.42 0.23 0.35 0.35 0.30 0.35 0.32 0.29 0.39 0.31 0.30 0.39 0-2 (2)
Russia Croatia 0.24 0.33 0.43 0.14 0.30 0.56 0.25 0.28 0.47 0.24 0.29 0.46 2-2 (X)
France Belgium 0.36 0.18 0.44 0.30 0.25 0.45 0.31 0.26 0.43 0.30 0.29 0.41 1-0 (1)
England Croatia 0.31 0.21 0.48 0.32 0.29 0.39 0.40 0.27 0.33 0.39 0.29 0.32 1-1 (X)
France Croatia 0.38 0.32 0.30 0.51 0.23 0.26 0.41 0.28 0.31 0.40 0.28 0.32 4-2 (1)
Belgium England 0.56 0.20 0.24 0.62 0.20 0.18 0.44 0.26 0.30 0.42 0.28 0.30 2-0 (1)

For each model, red cells denote the highest probabilities when not corresponding to the observed results, 
whereas light green cells denote the highest probabilities when corresponding to the observed results. The 
best overall probabilities for the observed results across all the four models are marked in dark green. The 
qualified teams are marked in bold characters. Distinct knockout stages (round of 16, quarter of finals, semi-
finals and finals) are separated by a solid horizontal line
1, X, and 2 denote the home team win, the draw, and the away team win, respectively
1Observed results are considered within the 90 regular min
2Model fitting: rstan package, 2000 iterations
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4.3 � Brier Score

The Brier score (Brier 1950), used by (Spiegelhalter and Ng 2009), is a type of mean-
squared error of the forecasts, ranging from zero to two:

where pim is the forecast probability of the outcome i, i ∈ {1, X, 2} , in the m-th match, 
and oim is a dummy coding for the actual outcome in the m-th match, equals one if event 

(9)Brier score =
1

M

M∑

m=1

∑

i∈{1,X,2}

(pim − oim)
2,
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Fig. 2   Posterior predictive distribution of the possible results for the two finals, France versus Croatia and 
Belgium versus England, according to the double Poisson and the bivariate Poisson models. The four plots 
report the posterior uncertainty for the spectrum of all the possible results. Darker regions are associated 
with higher posterior probabilities and red square corresponds to the observed result
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i happened, zero otherwise. The lower the Brier score, the better is the model’s predictive 
accuracy. Table 2 displays the pseudo-R2 and the Brier score computed for the knockout 
stage of the World Cup: Multinomial 2 yields the highest pseudo-R2 among the other mod-
els, but the value is slightly lower than that obtained by using the bookmakers probabilities, 
taken from the website https​://www.oddsp​ortal​.com. In this application, we transformed 
the betting odds into probabilities by adopting the so-called normalization procedure, by 
dividing each odds for the sum of the odds. Although not unique, this is the most common 
method to derive exact probabilities from the bookmakers odds (see Egidi et al. (2018) for 
other details). Quite surprisingly, the Brier score for the double Poisson model is the low-
est, and all the models yield values lower than those by bookies. For double and bivariate 
Poisson, we computed the win–draw–loss probabilities by aggregating over all the pos-
sible results coming from the MCMC sampling. For instance, posterior probabilities for 
the exact results 1–0, 2–0, 2–1, 3–1, etc., all contribute to the overall home-win probability, 
whereas posterior probabilities for the exact results 0–0, 1–1, 2–2, etc., all contribute to 
the overall draw probability, and so on for the the away-win probabilities as well. In such 
a sense, the finer partition implied by Poisson models—win–draw–loss results are nested 
within the goals realized and conceded in each match—is acknowledged by better predic-
tive results in terms of the Brier score.

4.4 � Leave‑One‑Out Cross Validation

Another way to assess and compute predictive accuracy is leave-one-out cross-valida-
tion (LOO) (Vehtari et al. 2017), a method for estimating pointwise out-of-sample pre-
diction accuracy from a fitted Bayesian model using the log-likelihood evaluated at the 
posterior simulations of the parameter values. The Bayesian LOO estimate of out-of-
sample predictive fit is:

where p(yn|y−n) is the leave-one-out predictive density given the data without the n-th data 
point. Analogously as with the other predictive information criteria such as AIC, DIC and 
WAIC, the lower is the LOOIC, the better is the model predictive accuracy. The right plot 
of Fig. 3 displays the LOOIC for the four considered models along the distinct World Cup 
stages: as may be seen, multinomial models yield lower LOOIC values in each tournament 
stage, possibly due to have fewer and fewer parameters than the Poisson models. For each 

(10)LOOIC = − 2

N∑

n=1

log p(yn|y−n),

Table 2   Average pseudo-R2 and Brier score across the knockout stage (round of 16, quarter, semifinals, and 
finals) of the FIFA World Cup 2018: the best probabilities in terms of pseudo-R2 are offered by the bookies, 
followed by the multinomial model with f (wn) = wn (Multinomial 2)

Best probabilities in terms of Brier score are offered by the double Poisson model

Multin. Multin. 2 D. Pois. Biv. Pois Bookies

Pseudo-R2 0.346 0.367 0.351 0.353 0.378
Brier score 0.647 0.642 0.610 0.612 0.656

https://www.oddsportal.com
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model, LOOIC increases as the World Cup progresses, and this happens because at each 
stage the number of the games increases and the sum in Eq. (10) increases with N.

5 � Discussion

We used the FIFA World Cup 2018 results to extensively compare and discern between 
result-based (multinomial) and goal-based (Poisson-based) models in predicting football 
outcomes. As we suspected, we do not have a unique answer; this is mainly because a 
statistical model cannot be validated only based on its predictive performance on a test set, 
but should be extensively verified and monitored from a broader viewpoint, going from 
posterior predictive checking to cross-validation tools.

Rather than adding new models to the existing literature, the main aim of this paper is 
to warn the reader and the football fan about trusting a particular model only for its even-
tual appealing performance and to push him to continually verify it in a larger sense. As a 
matter of practice, we understand that statistical modellers and data scientists often need a 
unique efficient procedure to find inferential conclusions and to attempt out-of-sample pre-
dictions. Being faced with the constraint of choosing a model, we would end up selecting 
the multinomial models for tournaments such as the World Cup, where, usually, predict-
ing the final three-way outcome is easier than trying to predict the exact number of goals. 
Moreover, model complexity is lower than that of Poisson models, as the leave-one-out 
cross validation suggests.

Despite a great statistical interest in a knockout tournament structure such as the World 
Cup, future research should focus on applying the proposed bag of comparison tools to 
seasonal leagues such as the English Premier League or the Italian Serie A. With a larger 
number of matches and, consequently, larger amount of information, we expect much more 
robustness from those analyses and less controversial findings. In such a way, we could 
claim which class of models is actually better designed to provide suitable goodness of fit 
and good predictive accuracy measures for long-run seasonal leagues.

Fig. 3   Pseudo-R2 and LOOIC for all the considered stages of the FIFA World Cup
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