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Abstract Label switching is a well-known and fundamen-
tal problem in Bayesian estimation of finite mixture models.
It arises when exploring complex posterior distributions by
Markov Chain Monte Carlo (MCMC) algorithms, because
the likelihood of the model is invariant to the relabelling
of mixture components. If the MCMC sampler randomly
switches labels, then it is unsuitable for exploring the poste-
rior distributions for component-related parameters. In this
paper, a new procedure based on the post-MCMC relabelling
of the chains is proposed. The main idea of the method is
to perform a clustering technique on the similarity matrix,
obtained through the MCMC sample, whose elements are
the probabilities that any two units in the observed sample
are drawn from the same component. Although it cannot be
generalized to any situation, it may be handy in many appli-
cations because of its simplicity and very low computational
burden.
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1 Introduction

Label switching is a well-known and fundamental problem
in Bayesian estimation of finite mixture models (McLach-
lan and Peel 2000). The label switching problem arises
when exploring complex posterior distributions by Markov
Chain Monte Carlo (MCMC) algorithms, because the like-
lihood of a G-component mixture model is invariant to the
relabelling of mixture components. Because of this invari-
ance, the likelihood has as many global maxima as there are
permutations of the indices (G!). This is a minor problem
(if a problem at all) when we perform classical inference,
since any maximum leads to a valid solution and inferential
conclusions are the same regardless of which one is cho-
sen. However, invariance with respect to labels is a major
problem when Bayesian inference is used: if the prior dis-
tribution is invariant with respect to the labelling as well
as the likelihood, then the posterior distribution is multi-
modal.

A suitable MCMC sampler should, then, in order to
explore the different modes, randomly switch labels. As a
consequence, it would be unsuitable to make inference on a
parameter specific of a component of the mixture.

Most of the existing approaches to perform inferences in
the presence of label switching are based on the relabelling
of the MCMC chain. A recent comprehensive review can be
found in Papastamoulis (2016). Relabelling means permut-
ing the labels at each iteration of the Markov chain in such
a way that the relabelled chain can be used to draw infer-
ences on component-specific parameters. Loosely speaking,
we may say that the relabelled chain can be seen as a chain
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where no label switching has occurred or, in other words, the
new labels are such that different labels do refer to distinct
components of the mixture. It is worth noting that relabelling
strategies may act during the MCMC sampling, and/or they
may be used to post-process the chains. Those solutions that
post-process the chains are particularly convenient (since the
issue can be ignored in performing theMCMC and then dealt
with later).

In this paper, a new procedure based on the post-MCMC
relabelling of the chains is proposed. The main idea of
the method is to perform a clustering technique on the
similarity matrix, obtained through the MCMC sample,
whose elements are the probabilities that any two units
in the observed sample are drawn from the same compo-
nent. Starting from the obtained partition, G units—called
pivots—one for each group are identified that belong to
the same group with negligible (posterior) probability. Evi-
dence from simulation studies shows that our procedure,
although simpler and in most cases less computationally
demanding than some competitors, has comparable perfor-
mances even when dealing with relatively complex mod-
els.

The paper is organized as follows. In Sect. 2, the label
switching problem in MCMC sampling is introduced in a
general setting. In Sect. 3, a relabelling method based on piv-
otal units is introduced and discussed, and a range of criteria
for pivot identification is given. In Sect. 4, a short overview of
a selection of existing solutions to the label switching prob-
lem is given, including both deterministic and probabilistic
relabelling approaches. In Sect. 5, a suitable simulation study
is performed in order to investigate and evaluate the perfor-
mance of the method introduced in this paper. A comparison
with the relabelling algorithms described in the previous sec-
tion is also provided. Section 6 illustrates the application of
the proposed methodology to a real dataset and compares
its performance with other available methods, in terms of
both relabelling efficiency and computational effort. Sec-
tion 7 concludes.

2 The label switching problem

Prototypical models in which the label switching prob-
lem arises are mixture models, where for a sample y =
(y1, . . . , yn) we assume

(Yi |Zi = g) ∼ f (y;μg, φ),

where the Zi , i = 1, . . . , n, are i.i.d. random variables,
g = 1, . . . ,G, φ is a parameter which is common to all
components, Zi ∈ {1, . . . ,G}, and

P(Zi = g) = πg.

The likelihood of the model is then

L( y;μ,π , φ) =
n∏

i=1

G∑

g=1

πg f (yi ;μg, φ), (1)

with μ = (μ1, . . . , μG) component-specific parameters and
π = (π1, . . . , πG) mixture weights. Let ν denote a permu-
tation of {1, . . . ,G}, and let ν(μ) = (μν(1), . . . , μν(G)),
ν(π) = (πν(1), . . . , πν(G)) be the corresponding permuta-
tions of μ and π . Denote by V the set of all the permutations
of the indexes {1, . . . ,G}, Eq. (1) is invariant under any per-
mutation ν ∈ V , that is

L( y;μ,π , φ) = L( y; ν(μ), ν(π), φ). (2)

As a consequence, the model is unidentified with respect to
an arbitrary permutation of the labels.

When Bayesian inference for the model is performed, if
the prior distribution p0(μ,π , φ) is invariant under a per-
mutation of the indices, then so is the posterior. That is, if
p0(μ,π , φ) = p0(ν(μ), ν(π), φ), then

p(μ,π , φ| y) ∝ p0(μ,π , φ)L( y;μ,π , φ) (3)

is multimodal with (at least) G! modes. This implies that
all simulated parameters should be switched to one among
the G! symmetric areas of the posterior distribution, by
applying suitable permutations of the labels to each MCMC
draw.

In what follows, we assume that an MCMC sample is
obtained from the posterior distribution for model (1) with
a prior distribution which is labelling invariant. We denote
as {[θ ]h : h = 1, . . . , H} the sample for the parameter
θ = (μ,π , φ), H being the number of MCMC iterations.
We assume that also a MCMC sample for the variable Z is
obtained and denote it by {[Z ]h : h = 1, . . . , H}.

In principle, a perfectly mixing chain should visit the
points (μ,π , φ) and (ν(μ), ν(π), φ) with the same fre-
quency. A chain with less than perfect mixing may either
concentrate on one mode of the posterior distribution or
exhibit random switches [see Celeux et al. (2000) where
several MCMC approaches for exploring the posterior dis-
tribution of mixture models and related inference problems
are discussed].

It has been suggested that using a sampler which is inef-
ficient with respect to the labelling—that is, unlikely to
switch labels—but otherwise efficient, may be a solution to
the label switching issue (an example is in Puolamäki and
Kaski 2009). We do not want to discuss the aptness of such
a solution in detail, but we note that it is tricky to justify
it theoretically and that this solution is impractical in gen-
eral terms since it is difficult to tune a sampler so that it is
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inefficient enough to avoid label switches but not too ineffi-
cient.

It is well known that the presence of label switches (or the
whole issue of relabelling) is totally irrelevant if the quantities
of interest are invariant with respect to the labels. A particu-
larly relevant example of invariant quantity is the probability
of two units being in the same group, ci j = P(Zi = Z j |D),
i, j = 1, . . . , n, where D denotes the set of the data.

Relabelling becomes relevant when we are interested,
directly or indirectly, in the features of G groups, such as the
posterior (and predictive) distributions of component-related
quantities such as the probability of each unit belonging to
each group. Regarding this aim, we introduce here the n×G
matrix Q, whose generic element qig is the probability that
the i-th unit belongs to group g, qig = P(Zi = g|D), for
i = 1, . . . , n, g = 1, . . . ,G.

3 A relabelling method based on pivotal units

The starting point for the pivotal methods we propose is a
partition of the observations. This can easily be obtained by
maximizing the posterior distribution, notwithstanding the
fact that the maximum is not unique (there are G! modes);
since the maxima are equivalent, any would be suitable.
Alternatively, the estimates of the probabilities ci j based on
the MCMC sample

ĉi j = 1

H

H∑

h=1

∣∣[Zi ]h = [Z j ]h
∣∣ , (4)

where |·| denotes the indicator function of an event, can be
used to derive a partition of observations through a suitable
clustering technique. In fact, the n×nmatrix Ĉ with elements
ĉi j can be seen as an estimated similarity matrix between
units, and the complement to one ŝi j = 1− ĉi j as a dissimi-
larity matrix (note that it is not a distance metric as si j = 0
does not imply that the units i and j are the same).

Let, then,G1, . . . ,GG be a partition. Furthermore, suppose
thatwecanfindG units, i1, . . . , iG , one for eachgroup,which
are (pairwise) separatedwith (posterior) probability one (that
is, the posterior probability of any two of them being in the
same group is zero). In terms of the matrix C with elements
ci j = P(Zi = Z j |D), the G × G submatrix with only the
rows and columns corresponding to i1, . . . , iG will be the
identity matrix. It is then straightforward to use the G units,
called pivots in what follows, to identify the groups and to
relabel the chains: for each h = 1, . . . , H and g = 1, . . . ,G,
set

[μg]h = [μ[Zig ]h ]h; (5)

[Zi ]h = g for i : [Zi ]h = [Zig ]h . (6)

The applicability of this strategy is limited by the existence
of the pivots, which is not guaranteed (see the discussion in
Sect. 3.1). Moreover, even when the pivots exist, they may
be difficult to find, and the methods to detect them are central
to the procedure. Some proposals are given and discussed in
Sects. 3.2 and 3.3.

It is worth noting that the idea of solving the relabelling
issue by fixing the group for some units dates back to Chung
et al. (2004), who, however, gave no indication on how to
choose the units. Also, since they suggest imposing such a
restriction in the MCMC, there is no measure of the extent to
which it influences the result (that is, the extent to which it is
informative if we interpret it as a prior information).We note,
however, that Chung et al. (2004) may be very interesting
when a set of units which are to be attributed to different
groups can be defined exogenously.

The idea of using some pivotal quantities for performing
the relabelling can also be found in the ECR algorithm by
Papastamoulis and Iliopoulos (2010) via the definition of
equivalence classes representatives, and inMarin et al. (2005)
and Marin and Robert (2007), where the pivotal reordering
algorithm (PRA) is introduced.

Another related idea is put forward by Yao and Li (2014),
who propose finding a reference labelling, that is, a clus-
tering for the sample (for example, the posterior mode), and
then relabel each iteration byminimizing some distance from
the reference labelling. The general idea is similar to the
one we suggest, but it is more computationally demanding
because of the required minimizations. On the other hand, it
avoids the need to condition on the pivots being separated.
We can argue, however, that the latter is not a major draw-
back of our proposal since its effects can bemeasured and are
likely to be small in many practical instances, as discussed
in Sect. 3.1.

3.1 Existence of pivots

The existence of the pivots is a requirement of the method,
meaning that its use is restricted to those chains—or those
parts of a chain—for which the pivots are present. This is
not always the case, and it is worth discussing some circum-
stances in which the pivots do not exist.

First, although the model is based on a mixture of G
components, each iteration of the chain may imply a dif-
ferent number of non-empty groups (that is, it may be that
[Zi ]h �= g ∀i for some g, h); let then [G]h ≤ G be the
number of non-empty groups at iteration h,

[G]h = #{g : [Zi ]h = g for some i},

where #A is the cardinality of the set A. If [G]h < G
for some h, there cannot be G perfectly separated units,
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and so there cannot be G pivots. Hence, the relabelling
procedure outlined above can be used only for the sub-
set of the chain for which [G]h = G; let it be HG =
{h : [G]h = G}. This means that the resulting relabelled
chain is not a sample (of size H ) from the posterior dis-
tribution, but a sample (of size #HG ) from the posterior
distribution conditional on there being (exactly) G non-
empty groups.

In fact, we can also consider the posterior distribution
conditional onG ′ < G groups for eachG ′ such thatHG ′ �= ∅
([G]h = G ′ for some h). Although the procedure has been
described above for G groups, where G is the number of
components, it can be implemented for anyG ′ < G such that
HG ′ �= ∅ starting from a partition of the observations intoG ′
groups (and, we note in passing, it may even be meaningless
for G ′ = G sinceHG may be empty).

We do not see this restriction as a major limitation of the
procedure since it is reasonable to see the issueof determining
the number of groups as a separate one; that is, it is reasonable
to study the characteristics of the groups conditional on the
number of groups, which entails performing the relabelling
for those sections of the chain where the number of non-
empty groups is constant.

Even if G non-empty groups are available, however, there
may not be G perfectly separated units. Let us define

H∗
G = {h ∈ HG : ∃k, s s.t. [Zik ]h = [Zis ]h}

that is, the set of iterations where (at least) two pivots are in
the samegroup. In order for the pivotmethod to be applicable,
we need to exclude iterations H∗

G ; that is, we can perform
the pivot relabelling on HG − H∗

G . Exclusion of H∗
G does

not have a clear interpretation in terms of conditioning; thus,
we may see the restricted chainHG −H∗

G as a sample from
an approximation of the posterior conditional to being G
non-empty groups, where the quality of the approximation is
loosely given by k∗ = 1 − #H∗

G/#HG . Such proportion, as
clarified later, could be used for selecting pivot identification
criteria.

3.2 Pivot identification based on dissimilarity measures

Assuming that G pivotal units do exist (possibly after enact-
ing the restrictions outlined in Sect. 3.1), identifying them
is not straightforward, since the set of all possible choices is
too large to be fully searched.

The general method we put forward is to select a unit for
each group according to some criterion, conceived so that the
chosen unit is as far as possible from units that might belong
to the other groups and/or as close as possible to units that
belong to the same group. Many criteria could be proposed;

for instance, for group g containing units Gg , we may chose
i∗ ∈ Gg that maximizes one of the quantities

(a) max
j∈Gg

ci∗ j ;

(b)
∑

j∈Gg

ci∗ j ;

(c)
∑

j∈Gg

ci∗ j −
∑

j /∈Gg

ci∗ j . (7)

These, respectively, give (a) the less distant unit among the
members that are the closest (most similar), (b) the unit that
maximizes the global within similarity, (c) the unit that max-
imizes the difference between global within and between
similarities. Alternatively, we may choose i∗ ∈ Gg , which
minimizes one of the quantities

(d) min
j∈Gg

ci∗ j ;

(e) min
j /∈Gg

ci∗ j ;

(f)
∑

j /∈Gg

ci∗ j , (8)

obtaining (d) the most distant unit among the members that
are the closest (most similar), (e) the most distant unit among
the members that are farthest apart (most dissimilar), (f)
the most distant unit among the members that minimize the
global dissimilarity between one group and all the others.

3.3 The MUS algorithm

We introduce a further method for detecting pivotal units,
whichwe callMaximaUnits Search (hereafter,MUS), which
turns out to be suitable in case of a low number of mixture
components, e.g. G = 3, 4.

The MUS algorithm does not rely upon a maximiza-
tion/minimization step, like the procedures in Sect. 3.2, but
searches for G pivots that identify submatrices with a simple
structurewithin the estimated similaritymatrixC . The under-
lying idea is to choose as pivots those units j1, . . . , jG such
that the G×G submatrix ofC with only the j1, . . . , jG rows
and columns has few, possibly zero, nonzero elements off the
diagonal (that is, this submatrix is identical or nearly identi-
cal). Note that an identity submatrix of the given dimension
may not exist. It is worth stressing that for a small number
of groups (e.g. G = 4) and a sample size n ranging between
100 and 1000, this search can be computationally demand-
ing. Furthermore, the existence of such identity submatrices
is not always guaranteed. For a more technical illustration
of the method and an overview of possible applications, we
refer to Egidi et al. (2016).
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4 A review of selected alternative methods

Relabelling strategies may be divided into two main cate-
gories. The first includes deterministic procedures, which
select a relabelling that minimizes the posterior expec-
tation of some loss function at each MCMC iteration;
the second consists of probabilistic procedures, where the
parameters’ permutations are considered parameters with
associated uncertainty. In this section, a short description
of some existing relabelling methods is provided. Most
of deterministic algorithms have been implemented in the
label.switching R package (Papastamoulis 2016) and will
be considered in Sects. 5 and 6 in comparison with our pro-
posal.

Deterministic relabelling strategies have been reviewed
in Rodríguez and Walker (2014). According to them, most
of these algorithms have the objective of finding the per-
mutation of the parameters that minimizes an appropri-
ate loss function. The general decision theoretic frame-
work proposed by Stephens (2000) is an excellent frame-
work for presenting and justifying most of the meth-
ods.

This approach translates the problem to that of choosing
an action a from a set of actions A into the parameter space
Θ , where a loss function L : A × Θ → R represents the
loss we incur if we choose the action a and the true value
of the parameter is θ . The loss function makes sense if it
is permutation invariant (remember that if we permute the
parameter components, the model remains the same). The
action a is then chosen by minimizing the posterior expected
lossR(a) = E(L(a; θ)|D).

According to our specific problem, the action a can be
the estimation of the parameter (or part of it), the cluster-
ing allocation into groups, or a particular summary from
the posterior distribution; the loss function can be a dis-
tribution to be fitted or an estimation error. The choice
should be driven by the objective of inference. It is worth
noting that a possible problem with this general class of
methods might be the choice of the appropriate loss func-
tion.

If the objective is the clustering of n units into G groups,
a reasonable action is to report the n×G matrix Q defined in
Sect. 2. A corresponding loss is then the distance, somehow
measured, between Q and its true value P(θ) = [pig(θ)]
where (for the toy example)

pig(θ) = P(Zi = g| y, θ) = πg f (yi ;μg, θ)∑
j π j f (yi ;μ j , θ)

.

In particular, Stephens’ method (2000) employs the
Kullback–Leibler distance.

Algorithm 1: STEPHENS

Start: choose H initial permutations ν(t), t = 1, . . . , H
(usually set to the identity).

Step 1: for t = 1, . . . , H, g = 1, . . . ,G, i = 1, . . . , n
calculate qig = H−1 ∑H

t=1 p
(t)
iν(g).

Step 2: for t = 1, . . . , H find a permutation ν(t) which
minimizes

L(t)(Q; θ) =
n∑

i=1

G∑

g=1

p(t)
iν(g) log

⎛

⎝ p(t)
iν(g)

qig

⎞

⎠ .

Step 3: if an improvement is made to
∑H

t=1 L(t)(Q; θ),
go to Step 2; otherwise, stop.

Note that step 2 entails n minimizations with respect to
all the permutations (G!). The method is computationally
expensive and requires storing the H × n × G array p of
classification probabilities.

The ECR algorithm (Algorithm 2) introduced by Papasta-
moulis and Iliopoulos (2010) partitions the set of allocation
vectors Z = (Z1, . . . , Zn) into equivalence classes and then
selects a representative from each class. In order to find these
equivalence sets, the procedure involves the definition of a
pivotal allocation Z∗ = (Z∗

1 , . . . , Z
∗
n), generally selected by

choosing an high-posterior density point, e.g. the Maximum
A Posteriori (MAP) estimate. Thus, a natural action a here
is the allocation vector Z .

Algorithm 2: ECR

Start: define a pivot allocation Z∗ = (Z∗
1 , . . . , Z

∗
n).

Step 1: for t = 1, . . . , H , find ν(t) that minimizes

L(t)(Z; θ) =
n∑

i=1

|ν(Z (t)
i ) �= Z∗

i |.

Rodríguez and Walker (2014) implemented two itera-
tive versions for the ECR, named ECR-iterative-1 and
ECR-iterative-2, respectively (see Algorithms 3 and
4 below); according to these modified versions, the pivot
is selected via an iterative procedure, and this makes these
methods computationallymore expensive than the basicECR
algorithm. The first procedure uses as inputs only the alloca-
tion vector Z , while the second one requires also the array of
classification probabilities across the MCMC sample p (also
used in Stephens 2000). It is worth stressing that storing this
array is often not feasible in terms of CPU time.
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Algorithm 3: ECR-iterative-1

Start: initialize H initial permutations ν(t), t =
1, . . . , H (usually set to the identity).

Step 1: for i = 1, . . . , n calculate Z∗
i =

mode{ν(Z (t)
i ), t = 1, . . . , H}.

Step 2: for t = 1, . . . , H , find ν(t) that minimizes

L(t)(Z; θ) =
n∑

i=1

|ν(Z (t)
i ) �= Z∗

i |.

Step 3: if an improvement in
∑H

t=1 L(t)(Z; θ) has been
achieved, go back to Step 2; otherwise, finish.

Algorithm 4: ECR-iterative-2

Start: initialize H initial permutations ν(t), t =
1, . . . , H (usually set to the identity).

Step 1: for i = 1, . . . , n calculate Z∗
i =

argmax{p(t)
iν(g), t = 1, . . . , H}.

Step 2: for t = 1, . . . , H , find ν(t) that minimizes

L(t)(Z , p; θ) =
n∑

i=1

|ν(Z (t)
i ) �= Z∗

i |.

Step 3: if an improvement in
∑H

t=1 L(t)(Z , p; θ) has
been achieved, go back to Step 2; otherwise, finish.

The DATA-BASED algorithm (Algorithm 5) developed in
Rodríguez and Walker (2014) aims at defining a simple loss
function by using a data-driven approach. Here, the intuition
is that, if the MCMC has converged, the labels of the clus-
ters may change, but the clusters should be the same from
iteration to iteration. For example, the clustersmaybe charac-
terized by their centresμg and dispersions σg , g = 1, . . . ,G.
An estimate of μg and σg may be used as pivots for the rela-
belling procedure.

Algorithm 5: DATA-BASED

Start: find estimates mg and sg for cluster centres and
dispersions, g = 1, . . . ,G.

Step 1: for t = 1, . . . , H , find a permutation ν(t) that
minimizes

L(t)(m, s; θ) =
G∑

k=1

G∑

l=1

|Z (t)
i = ν(l)|

∑

i

(
yi − mk

sk

)2

.

Marin et al. (2005) and Marin and Robert (2007) propose
the PRA algorithm (Algorithm 6), where the MCMC sample
is permuted in order to minimize its distance from a pivot
parameter vector, as the MAP estimate.

Algorithm 6: PRA

Start: choose a pivot parameter θ∗ = (θ∗
g ), g =

1, . . . ,G.
Step 1: for t = 1, . . . , H , find a permutation ν(t) that

maximizes
∑G

g=1 θ
(t)
ν(g)θ

∗
g .

Finally, the aic method (namely Algorithm 7) imposes
an artificial constraint on the MCMC sample, which is then
permuted according to the ordering of a specific parameter.
Note that this is the simplest approach for dealing with the
label switching, but it is often not feasible to find a natural
ordering for the parameters.

Algorithm 7: aic

Start: choose a component-specific parameter, for
example the group means μg , g = 1, . . . ,G.

Step 1: for t = 1, . . . , H find the permutation ν(t) such
that μ(t)

ν(1) < · · · < μ
(t)
ν(G).

The probabilistic relabelling approach first appears in
Jasra (2006). Probabilistic relabelling methods do not min-
imize the distance of the permuted MCMC from a suitable
loss function. In order to make inferences on component-
specific parameters, a function of the parameters is estimated,
which may also depend on an allocation vector Z (t) =
(Z (t)

1 , . . . , Z (t)
n ) at MCMC iteration t (t = 1, . . . , H ):

u(Z , θ) = H−1
H∑

t=1

∑

ν∈V
p(ν|Z (t), y)u(ν(Z (t)), ν(θ(t))),

(9)

where p(ν|Z (t), y) is the posterior distribution for each per-
mutation at MCMC iteration t . From a computational point
of view, two tasks of this class of algorithms turn out to be
crucial: the choice of u(·) and the estimation of p(ν|Z (t), y),
also called the permutation distribution. For the first pur-
pose, a natural choice suggested by Sperrin et al. (2010) is
the identity function for the components of the parameters’
vector, as u(π) = π for the mixture weights. For the second
task, they apply an EM-type algorithm, where the missing
data are the permutations {ν(t), t = 1, . . . , H} and these
densities are estimated by conditioning only on the data the
current parameter estimate for θ and the current allocation
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Fig. 1 Illustration of a simulated sample of size n = 1000 from model (10) with G = 4 components, according to a scenario A, b scenario B and
c scenario C, with means as in Table 1

vector Z (t). That is, at the expectation step the permutation
densities are estimated using the current parameter estimate
for θ , and the estimate for θ is updated by using Eq. (9) at
the maximization step.

The approach proposed by Puolamäki and Kaski (2009) is
slightly different. They consider the matrix Q, an estimate of
whichmay be obtained bymaximizing aBernoulli likelihood
through the EM algorithm. In their method, the permutation
density does not depend on the entire set of data, but only on
Q. Once Q has been estimated, the authors compute the per-
mutation distributions for each sample t, t = 1, . . . , H , as

p(ν|Z (t), Q) ∝
G∑

g=1

1

G

n∏

i=1

[qig]|Z
(t)
i =ν(g)|[1 − qig]1−|Z (t)

i =ν(g)|.

p(ν|Z (t), Q) is used to obtain the distribution of (Z , θ) by
plugging it into Eq. (9). The latter expression highlights the
computational burden of this probabilistic approach, which
requires averaging over all possible permutations of the
MCMC sample. Despite the appeal of computing the poste-
rior distribution for all possible permutations, such a method
is suitable only when applied to simple cases, with a small
enough n and G.

5 Evidence from a simulation study

The aim of this section is to investigate the behaviour of the
proposed solution for dealing with label switching based on
pivot identification in different simulated scenarios. Being
interested in the ability of our method to detect the pivots,
we need to define a challenging scenario in terms of both
relabelling issue and pivotal choice.

For this purpose, we focus on data simulated from a mix-
ture of non-equally weighted mixtures of bivariate Gaussian
distributions with unequal covariance matrices, so that the

Table 1 Two-dimensional mean vectors of scenarios A, B and C
adopted in the simulation study

Scenario A Scenario B Scenario C

μ1s (25, 0) (−10, −10) (−10, −10)

μ2s (60, 0) (20, −10) (20, −10)

μ3s (0, 20) (−10, 20) (5, 5)

μ4s (50, 20) (20, 20) (5, 25)

Table 2 Estimated proportion k∗ of relabelled iterations (see Sect. 3.1),
over 100 macro-replications, for scenarios A, B and C

(a) (b) (c) (d) (e) (f) MUS

A 0.475 0.993 0.993 0.124 0.506 0.993 0.313

B 0.519 0.998 0.998 0.101 0.707 0.998 0.995

C 0.139 0.300 0.507 0.079 0.267 0.368 0.374

generated components may result in overlapping clusters.
Specifically, the simulation scheme consists of the following
steps.

(i) Simulate n values Y1, . . . ,Yn , from a mixture of mix-
tures of bivariate Gaussian distributions, where

(Yi |Zi = g) ∼

2∑

s=1

pgs N2(μg,Σs). (10)

That is, conditional on being in group g ∈ {1, . . . ,G},
Yi is picked out from one of two possible Gaussian dis-
tributions with weights pgs , means μg and covariances
Σs , s = 1, 2. The likelihood of the model is then

L( y;μ,π ,Σ) =
n∏

i=1

G∑

g=1

πg

(
2∑

s=1

pgs N2(μg,Σs)

)
.
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Fig. 2 Crosses are group means, and circles are the median values of relabelled estimates. Here, the pivotal method is implemented using
agglomerative hierarchical clustering and MUS algorithm—see text

(ii) Obtain an MCMC sample that effectively explores all
modes of the posterior distribution.

(iii) Estimate the n × n similarity matrix C with elements
ci j = P(Zi = Z j |D), i, j = 1, . . . , n, by Eq. (4).

(iv) Apply a suitable clustering technique based on the esti-
mated dissimilarity matrix with elements ŝi j = 1 − ĉi j
and obtain a partition of the observations in G groups
with units Gg, g = 1, . . . ,G.

(v) Detect the pivots, one for each group, according to one
criterion among the ones discussed before.

(vi) If necessary, discard those iterations of the chains
belonging toH∗

G (see Sect. 3.1) and relabel the resulting
chain with iterations in the restricted chain HG − H∗

G
via Eqs. (5) and (6).

In the simulation study presented here, a sample size of
n = 1000 and G = 4 components are considered. For
g = 1, . . . , 4, we set πg = 1/4, pg1 = 0.2, pg2 = 0.8 and
Σ1 = I2,Σ2 = 200 I2, I2 being the 2×2 identity matrix.We
generate simulated data frommodel (10) (see Fig. 1) accord-
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Table 3 Mean squared error
MSEg =
(1/B)

∑B
j=1||μ( j)

g − μ̂
( j)
g || of

the median values of relabelled
estimates of individual group
means μg , g = 1, . . . , 4
(B = 100)

MSE1 MSE2 MSE3 MSE4 Overall error

Scenario A

Pivotal method

(b) 13.7064 1.6104 1.9814 9.1846 6.6207

(c) 13.7794 1.6723 1.8979 9.2897 6.6598

(e) 14.0215 1.6619 1.9951 11.2910 7.2424

(f) 13.7301 1.6264 1.8889 9.2900 6.6338

MUS 12.5787 1.5531 1.7919 9.6220 6.3864

Other methods

aic 1.6657 1.6074 2.0269 2.1553 1.8638

DATA-BASED 13.6077 1.6779 1.9031 8.8071 6.4985

ECR 13.6281 1.6589 2.0588 9.0821 6.6069

ECR-iterative-1 13.6403 1.6605 1.9015 8.8085 6.5027

PRA 1.6733 1.6096 2.0459 2.1366 1.8660

P&K 25.5940 15.5229 15.1522 27.2411 20.8775

Scenario B

Pivotal method

(b) 1.4123 1.6005 1.5737 1.5419 1.5321

(c) 1.4121 1.5982 1.6192 1.5420 1.5429

(e) 1.4096 1.5961 1.5729 1.5403 1.5297

(f) 1.4127 1.6003 1.5736 1.5417 1.5321

MUS 1.4070 1.5877 1.5728 1.5437 1.5278

Other methods

aic 2.0131 2.1765 2.0098 2.0270 2.0566

DATA-BASED 1.4128 1.5985 1.5720 1.5428 1.5315

ECR 1.4112 1.5967 1.5700 1.5417 1.5299

ECR-iterative-1 1.4129 1.5984 1.5717 1.5429 1.5314

PRA 1.8782 2.0972 1.9197 1.9259 1.9552

P&K 18.4657 18.6185 18.6796 19.0404 18.7010

Scenario C

Pivotal method

(b) 6.9196 7.8994 8.7700 14.1766 9.4414

(c) 7.1992 7.1643 9.4728 15.2713 9.7769

(e) 7.7730 9.1701 9.1987 16.4153 10.6393

(f) 7.6160 7.1054 10.2073 13.2589 9.5469

MUS 6.7458 7.5579 9.7924 14.8356 9.7329

Other methods

aic 3.2628 3.5866 10.2319 3.8349 5.2290

DATA-BASED 5.7496 5.9469 8.4893 8.7063 7.2230

ECR 6.1148 6.5128 8.4971 8.8926 7.5043

ECR-iterative-1 6.4891 6.7234 8.4472 9.3649 7.7561

PRA 3.1679 3.4210 10.3873 2.9754 4.9879

P&K 17.5726 16.8717 3.4988 20.2620 14.5512

The last column contains the values of the overall error given by (1/G)
∑

g MSEg

ing to the three scenarios with means reported in Table 1, and
obtain an MCMC sample of H = 3000 iterations.

We proceed according to points (i)–(vi). As a remark, two
different clustering strategies are applied to the dissimilari-

ties ŝi j in order to obtain G clusters of observations, namely
agglomerative and partitioning hierarchical clustering. Both
methods only require a distance or a dissimilarity matrix as
input and return a set of nested clusters that are organized
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as a tree structure. We note that the two algorithms provide
very similar clusters; thus, we observe that the choice of the
clustering technique does not affect the performance of the
relabelling procedure. Therefore, for the sake of illustration,
we restrict to agglomerative hierarchical clustering, where
the so-called complete linkage is adopted as a criterion for
the computation of the dissimilarity between two clusters,
since it is less susceptible to noise and outliers.

Table 2 shows the proportions k∗ of relabelled iterations
based on 100 simulated samples according to the three sce-
narios illustrated in Fig. 1, for criteria (a)–(f) in Eqs. (7)
and (8) and the MUS algorithm. As can be noticed, methods
labelled (b), (c) and (f) register very high values of chain pro-
portions (less than 1% of the iterations is discarded) for both
scenarios A and B. Concerning the third scenario (C), crite-
ria (c), (f) and the MUS algorithm yield better results than
the others. Method (d) seems to have the worst performance
regardless of the considered setting; in particular, in scenario
C the algorithm discards about 92% of the original iterations.
The fact that the third simulated scenario shows globally less
satisfactory results is not surprising. In fact, the means are so
close to each other that the clustering algorithm may fail in
recognizing the true data partition, thus impairing the qual-
ity of the choice of the pivotal units. Additional figures and
comments to these results not shown here are available in the
“Supplementary Material” file.

In order to compare the performance in estimating the
means of the mixture components of the proposed method-
ologywith other relabelling algorithms, we consider the Puo-
lamäki and Kaski (P&K) procedure and the following meth-
ods briefly reviewed in Sect. 4: ECR, ECR-iterative-1,
DATA-BASED, PRA and aic. As discussed in Papas-
tamoulis (2016), the need to store the array p of clas-
sification probabilities makes Stephens’ method and the
ECR-iterative-2 algorithm demanding in terms of
computational burden; for this reason, we do not include
these procedures in the simulation study. Figure 2 displays
the median estimates of relabelled group means (scenario
B) according to the pivotal method and the six rela-
belling algorithms mentioned above. As can be seen, our
relabelling procedure seems to provide quite accurate esti-
mates of the group means. Similar results are achieved by
ECR-iterative-1, ECR and DATA-BASED, while the
algorithm by Puolamäki and Kaski does not appear to yield
reliable estimates for the groupmeans.PRA andaic perform
dramatically worse than the other deterministic algorithms
and our proposal in scenario B, even if they are very efficient
in scenarios A and C. As alreadymentioned, aicmay be not
considered as a general relabelling algorithm due to a prior
imposition of an ordering constraint to a specific parameters’
vector. Indeed, it is not always possible to specify a general
geometrical ordering; an example in two dimensions is given
in Fig. 2. Concerning the PRA method, a MAP estimate for

Table 4 CPU time (in seconds) for different methods and for scenarios
A, B and C

Method A B C

ECR 2.84 2.84 2.84

ECR-iterative-1 16.86 16.97 16.83

PRA 0.22 0.22 0.20

aic 0.03 0.05 0.03

DATA-BASED 8.22 8.20 8.11

Pivotal 4.32 4.36 4.00
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Fig. 3 Histogram of fishery data. Values on x-axis are snapper length
measurements

the parameters’ vector is required, which means optimizing
a bivariate mixture log-likelihood for the determination of a
MCMC iteration that corresponds to a high density area. Due
to the dimensions of our simulation study, this appeared to
be computationally demanding and we chose as MAP esti-
mate an arbitrary MCMC iteration. Hence, we consider the
PRA algorithm to be unfeasible when the dimension of the
parameters’ vector is large.

Table 3 reports the mean squared errors for the median
values of relabelled estimates of individual group means
(computed from B = 100 macro-replications) correspond-
ing to the pivotal methods listed in Sect. 3. For each setting,
Table 3 also displays a measure of the global error (so-called
overall error) in the estimation of the four groupmeans, com-
puted by averaging the mean squared errors of the single
components. Motivated by the estimated proportions k∗ in
Table 2, we only consider criteria (b), (c), (e) and (f), which
give overall good results, and the MUS algorithm which, in
some cases, outperforms all the others. In summary, all meth-
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Fig. 4 MCMC traces for fishery data. Raw MCMC sample (top left) for μg, g = 1, . . . , 5. Reordered MCMC samples according to ECR,
ECR-iterative-1, ECR-iterative-2, PRA, STEPHENS, aic, DATA-BASED and pivotal method, according to pivotal criterion (f)—see
text

ods perform better than P&K under all scenarios. PRA and
aic are the best performers in two out of three scenarios, but,
as already noted, they are unfeasible in many situations. The
proposed pivotal method performs similarly to competitors
in scenarios A and B, while in scenario C the pivotal method
implies a slightly larger MSE.

In Table 4, the required CPU times for execution of the
different relabelling methods are reported (all computations
were performed using R version 3.3.0 on an Intel (R) Core
(TM) i7-4790 machine with 3.60 GHz). It is worth mention-
ing that only the single relabelling step is taken into account
(for our method, this means considering the relabelling task

in Eqs. (5)–(6) solely). Preliminary steps, such as the log-
likelihood optimization in the PRA method or the selection
of the pivotal allocation vector in ECR, are not considered.
However, from the discussion in Papastamoulis (2016, Sect.
4), we can argue that for some of the reviewed methods such
preliminary computations may be demanding. As for pivotal
method, the identification of pivots required for the rela-
belling task turns out to be not particularly time-consuming,
except for the MUS procedure. Finally, note that we do not
report the CPU times for P&K algorithm (which were larger
than 200), due to its inefficiency and high computational bur-
den.
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Table 5 CPU time (in seconds) for different methods applied to fishery
dataset

Method CPU time

ECR 8.66

ECR-iterative-1 60.83

ECR-iterative-2 28.39

PRA 3.96

STEPHENS 344.50

aic 0.08

DATA-BASED 22.68

Pivotal 9.57

Ruling out the comparison of PRA and aic for the
reasons outlined above, as far as the other methods are con-
cerned, ECR and our pivotal methods appear to have some
advantage in terms of computational time with comparable
precision.

6 A case study

The fishery dataset, originally taken from Titterington et al.
(1985) and used by Papastamoulis (2016) for comparing
different relabelling procedures, consists of n = 256 snap-
per length measurements. In Fig. 3, the histogram of the
lengths is shown. The proposed methodology is applied
to this dataset, and the results are compared with the
five algorithms already considered in the previous sec-
tion available in the label.switching package; additionally,
ECR-iterative-2 and STEPHENS are included in our
study. We use a Gaussian mixture with G = 5 components
as suggested by Papastamoulis (2016), that is:

yi ∼
G∑

g=1

pgN (μg, σ
2
g ), i = 1, . . . , n. (11)

We set up aGibbs sampling through the bayesmix R pack-
age (Grün 2011), with H = 11,000 iterations and a burn-in
period of 1000.

In Fig. 4, the raw MCMC sample and the reordered
MCMC samples for μg, g = 1, . . . , 5, for different methods
are shown (the label.switching function of the same
package is used to reorder the obtained chains according to
the resulting permutations). Despite an ordering constraint
for components’ means (the priors are chosen according to
the independence option, which favours a natural order-
ingof themeans), label switchingoccurs, and the rawsampler
is unable to yield useful means estimates for the single com-
ponents (see the top left panel of Fig. 4).

In general, we can see that the procedures from the
label.switching package seem to perform similarly. In par-

ticular, for the greatestmean (light blue trace) there is a global
tendency of switching. We note that the same happens also
for the second mean (blue trace) in most procedures, espe-
cially for DATA-BASED, PRA and aic. Our pivotal method
seems to work better in isolating the five high-posterior den-
sity regions. We recall that the reordering for our method is
explained by Eq. (5).

Table 5 reports the CPU times (in seconds) for the com-
paredprocedures.As canbe seen,aic andPRA are the fastest
methods. We observe that ECR is slightly less intensive than
our method, while the pivotal algorithm is faster than four
relabelling procedures.

7 Concluding remarks

Wepropose a simple procedure for dealingwith label switch-
ing inBayesianmixturemodels, based on the identification of
as many pivots as mixtures components, used for relabelling
the resulting MCMC chains. The main novelty of our contri-
bution is to provide some useful indications of how to choose
the pivots, since, as mentioned in Sect. 3, the idea of solving
the relabelling issue by fixing the groups for some units is
not new. We suggest and evaluate alternative criteria based
on a suitably defined similarity matrix obtained through the
MCMC sample.

The proposed pivotal method is quite easy to imple-
ment and is computationally less demanding than other
relabelling methods, since it does not involve a maximiza-
tion/minimization step at each iteration but only requires a
permutation of the labels induced by the pivots membership.

The simulation study presented, although limited, shows
that the proposed solution yields overall good performances.
A case study on a real dataset is also presented, showing
the advantage of using the proposed method. Moreover, an
evaluation of the computational complexity of our algorithm
compared with other competing procedures (for instance,
those available in the label.switching R package) confirms
that our methodology represents a valid approach to dealing
with the label switching problem.
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