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a b s t r a c t

Mixture prior distributions are much used in statistical applications, such as clinical
trials, especially to avoid prior-data conflicts. We explicitly prove that the effective
sample size (ESS) of a mixture prior rarely exceeds the ESS of any individual mixture
component density of the prior.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In a Bayesian model the need of measuring and quantifying the amount of information contained in a prior distribution
s of great theoretical and practical appeal. However, the task of assessing the impact of a prior distribution on the final
nferential conclusions presents some technical difficulties, including the impossibility of building a unique philosophical
nd mathematical framework designed to satisfactorily achieve this aim. Among others, Morita et al. (2008) defined the
ffective sample size (ESS) for a parametric prior distribution as that integer value minimizing the distance between a
andidate prior and a posterior distribution based on a noninformative prior—referred hereafter to as a noninformative
osterior—defined in terms of the curvatures of their log-densities. The resulting ESS may be considered as the sample
ize due to the prior component, that is then added to the size of the experiment, conveyed by the likelihood: the larger
his value, the higher the chance the chosen prior will dominate the inference.

An extra amount of prior size, possibly derived from historical information, could have dramatic consequences such
s yielding the so-called prior-data conflict (Evans and Moshonov, 2006; Evans and Jang, 2011; Egidi et al., 2021).
his is particularly true when dealing with clinical trials, for which the use of robust mixture priors has proven to
lleviate prior-data conflicts (Schmidli et al., 2014; Egidi et al., 2021). Moreover, it is customary—e.g., in Bayesian
ariable selection (O’Hara and Sillanpää, 2009)— to choose a mixture prior in which one of the components is vague
r noninformative and the other one is rather informative, according to the ‘‘spike and slab’’ prior philosophy (George
nd McCulloch, 1993). Given a couple of priors q, p, we can combine them in a new mixture prior for the parameter θ :

π (θ ) = ψq(θ ) + (1 − ψ)p(θ ), (1)

with ψ ∈ [0, 1]. Egidi et al. (2021) proposed for p to use a standard Gaussian in many applied problems, or a wildly
informative data-dependent prior in small-sample scenarios, whereas Schmidli et al. (2014) develop a meta-analytic-
predictive (MAP) prior derived from historical data by preliminarily fixing the weight ψ according to the experimenter’s
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udgement. q is usually chosen as belonging to the same parametric family of p but with an inflated variance. Regarding
he choice of q, almost any choice is possible: however, Egidi et al. (2021) propose to use weakly-informative priors in
he spirit of Gelman et al. (2008).

Moreover, to capture and express a wide range of prior beliefs, Diaconis and Ylvisaker (1985) and others proposed to
ombine more conjugate prior distributions:

π (θ ) =

k∑
i=1

ψipi(θ ), (2)

along with a hyperprior on ψ , so that the resulting mixture prior could incorporate distinct experts’ opinions.
Although mixture priors turn out to be helpful in many statistical settings and may act as a valid approximation for

any parametric prior (Dalal and Hall, 1983; Diaconis and Ylvisaker, 1985), it is not immediate to establish their amount
of information and then compute their effective sample size. In this paper we adopt the ESS measure proposed by Morita
et al. (2008) and we try to fill this gap by providing some guidelines along with some theoretical results to ease this
computation and understand the final result. Some implementation details and simulation procedures follow the logic
outlined by Egidi (2018).

2. Review of prior effective sample size (ESS)

Given the parameter-vector θ ∈ Θ ⊂ Rd, we start eliciting two prior distributions p(θ), q(θ) by posing the following
orking assumptions on their moments:

Eq(θ) = Ep(θ)
Corrp(θi, θj) = Corrq(θi, θj), i ̸= j
Varq(θj) ≫ Varp(θj), j = 1, . . . , d,

(3)

such that p is referred to be a rather informative prior, whereas q is intended to be a noninformative prior distribution.
The equality of the prior means is customary in many applications and frameworks, such as clinical trials—where we
could suspect that a covariate has no effect in terms of regression purposes but we could be more or less confident about
this finding— Bayesian Variable Selection (George and McCulloch, 1993) and comparison of priors (Evans and Jang, 2011).
Here, the degree of ignorance intrinsic in our noninformative prior is completely translated in terms of a higher variability
rather than in a different location.

According to Morita et al. (2008), the prior ESS of p(θ) with respect to the likelihood f (y|θ) is defined as that integer
which minimizes the distance between p(θ) and the noninformative posterior qn(θ|y). To define this distance, the negative
econd partial derivatives of the log-densities (the observed informations) are used for j = 1, . . . , d:

Dp,j(θ) = −
∂2 log(p(θ))

∂θ2j
; Dq,j(n, θ, y) = −

∂2 log(q(θ|y))
∂θ2j

. (4)

n what follows, we will sometimes use the simplified notations p, qn in place of p(θ), qn(θ|y) and Dp,j,Dqn,j in place of
p,j(θ),Dq,j(n, θ, y), respectively, where n is the data sample size. Let Dp,+ =

∑d
j=1 Dp,j and Dqn,+ =

∑d
j=1

∫
Dqn,jf (y)dy

enote the global information for the prior p and the posterior qn, respectively. When d = 1, we will simply write Dp,Dqn ,
uppressing the subscript ‘+’.
The distance between the prior p and the posterior qn is then defined as the difference between the traces of the two

nformation matrices:

δ(n, θ̄, p, qn) = |Dp,+(θ̄) − Dqn,+(θ̄)|, (5)

valuated in θ̄ = Ep(θ), the prior informative mean—alternatively, one could also evaluate the curvature at the informative
rior mode. Some discrepancy measures alternative to (5) could be adopted here, such as a member of the Rényi’s
lass of divergence measures (Rényi, 1961), the Kullback–Leibler divergence. Even though the latter is an asymmetric
ivergence measure, as suggested by Nott et al. (2020) we could compute DKL(qn(θ∥y)∥p(θ)) =

∫
qn(θ|y) log

(
qn(θ|y)
p(θ)

)
dθ,

that represents the amount of useful information, or information gain, about θ, that has been learned by discovering y.
In other words, the Kullback–Leibler divergence above measures the amount of information lost when the prior p is used
in place of the posterior qn.

The ESS for p is defined by Morita et al. (2008) as the integer minimizing the distance in (5):

ESSp = argmin
n∈N

{δ(n, θ̄, p, qn)}, (6)

where the negative second log-prior derivative does not depend on n, whereas the posterior distribution always depends
on the sample size n (see Table A.1 in the Support Information material for a quick overview about well-known Bayesian
models). Thus, when Dqn is linear in n, the distance defined in Eq. (5) reduces to a form such as |a − n|, where a is a
constant: this is a continuous but not differentiable function in the minimum value n = a. When D is a polynomial in
qn
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he variable n of order greater than or equal to 2, then the distance δ(·) is of the form |a − nb
|, b ≥ 2, and represents a

ontinuous and differentiable function.
The ESS defined in (6) is a very useful index of a prior’s informativeness, and can be computed for parameters’

ubvectors; moreover ESS values may be also used to monitor the prior’s reliability in the stage of elicitation process. When
he ESS for a given prior is particularly high and close to the whole experiment’s sample size, the experimenter could be
empted to think that inferential conclusions are dominated by the prior rather than the data. As previously remarked,
lternative distances or divergence measures could be easily—through use of suited R libraries, e.g.—applied in (5) and (6)
o find the correspondent value of ESS: different methods can yield slightly different results, perhaps sensitivity checks
hould always be implemented.
To gain generality, let us consider now the mixture prior π (θ) =

∑k
i=1 ψipi(θ) defined by considering k prior

istributions, each contributing the mixture through a weight ψi, to possibly reflect multiple prior opinion beliefs about
he parameter, as suggested by Diaconis and Ylvisaker (1985). The effective sample size ESSπ may be computed for the
ixture prior analogously as in (6), and upon some mild conditions the following theorem holds.

heorem 1. Suppose we elicit a sequence of prior distributions p1(θ), p2(θ), . . . , pk(θ) such that the following assumptions
old:

(i) Ep1 (θ) = Ep2 (θ) = · · · = Epk (θ);
(ii) Varp1 (θj) ≫ Varpi (θj) for j = 1, 2, . . . , d and i ̸= 1, so that the prior p1 is the most informative;
(iii) θ̄ = mode(pi(θ)) ∀i = 1, 2, . . . , k;
(iv) ψi are deterministic (fixed) coefficients such that

∑k
i=1 ψi = 1.

Given the mixture prior π (θ) =
∑k

i=1 ψipi(θ) and denoting Hi,j(θ̄) =
∂2pi(θ̄)
∂θ2j

|θ=θ̄ and Hi,+(θ̄) =
∑d

j=1 Hi,j(θ̄), we then obtain

he following relationship:

ESSπ ≤ ESSp1 ⇔ H1,+(θ̄) ≤

d∑
j=1

p1(θ̄)
∑k

i=2 ψiHi,j(θ̄)∑k
i=2 ψipi(θ̄)

. (7)

For a formal proof, see the Support Information material. Although an analytical solution of the ESS for the mixture
priors is not available in closed-form, Formula (7) provides an upper bound and yields an intuitive result. The interpre-
tation is that whatever the weights ψ and the priors p1, p2, . . . , pk used in the mixture, its information is lower than or
equal to the information contained in p1 if and only if the degree of informativity given by the second derivative of p1
does not exceed a threshold depending on the informativity expressed by all the other k−1 priors. The second derivative
of a prior distribution evaluated in the maximum value yields an intuitive amount of informativity: as depicted in Figure
D.1 from the Support Information material for some Gaussian priors, the higher the information provided by the prior,
and the lower is the second derivative value.

In the special case of a univariate two-component mixture with k = 2 where ψ (1-ψ) is the weight assigned to the
noninformative (informative) prior p2 (p1), Eq. (7) simplifies to:

p′′

1(θ̄ ) ≤
p1(θ̄ )
p2(θ̄ )

p′′

2(θ̄ ), (8)

which is always true, where the ratio p1(θ̄ )/p2(θ̄ ) ≥ 1, and p′′

2(θ̄ ) ≥ p′′

1(θ̄ ) due to the considerations above. Intuitively, the
less informative is p2, and the closer is the right term to zero, making p′′

1(θ̄ ) ≤ 0, which is true for hypothesis. Conversely,
as p2 is closer to p1, the right term in (8) tends to p′′

2(θ̄ ), and we get p′′

1(θ̄ ) ≤ p′′

2(θ̄ ), that is also true. Thus, the ESS provided
by a two-component mixture consisting of the couple of priors p1 and p2 does never exceed the ESS provided by the most
informative prior p1.

Suppose now to elicit a prior distribution for the mixture weights ψ of the mixture prior, rather than considering them
as a fixed/deterministic quantity. Then we have the following result.

Theorem 2. Assume the same conditions of Theorem 1 hold. If assumption (iv) is replaced by

ivb) ψ ∼ fψ , with fψ a suited prior for ψ, then ESSπ ≤ ESSp1 iff:

H1,+(θ̄) ≤

d∑
j=1

p1(θ̄)
∑k

i=2 ψiHi,j(θ̄)∑k
i=2 ψipi(θ̄j)

+ k
∑k

i=1 Hi,i(θ̄)pi(θ̄)∑k
i=1 ψipi(θ̄)

. (9)

The result above extends the upper bound stated in Theorem 1 by acknowledging a supplementary part of information
contained in the hyperprior distribution for the mixture weights. The more information is provided by the hyperprior for
ψ, and the lower is the upper bound for the information provided by p1 in Eq. (9): intuitively, as the mixture weights
information increases—thus, as the information of the mixture prior increases—we need an even more informative prior
3



L. Egidi Statistics and Probability Letters 183 (2022) 109335
Fig. 1. Scenario A: ESS for 100 simulated datasets under the informative p1(θ) ∼ Dirichlet(θ|α) and the mixture prior
∑3

i=1 ψipi(θ) under different
choices for the mixture weights ψ, where p2(θ) ∼ Dirichlet(θ|α/c), p3(θ) ∼ Dirichlet(θ|α/3c), α = (5, 5, 10) and c = 10.

p1 to ensure that ESSπ ≤ ESSp1 . In case of a uniform hyperprior ψ ∼ U(0, 1)—i.e., scarce information for ψ—then
Hi,i(θ̄) = 0 ∀i = 1, 2, . . . , k, thus the second addendum in (9) is zero, and Formula (7) arises as a special case. By resuming,
when no (or very scarce information) is plugged into this hyperprior the ψ’s do not influence the final mixture ESS and
they behave as they were deterministic factors.

3. Simulation study

We consider a multinomial-Dirichlet model to perform a simulation study and assess the effective sample size provided
by a rather informative prior and a mixture prior. For each n = 1, 2, . . . , 50 we simulate M datasets replications
y(m)

∼ Multin(n, θ), where θ ∈ [0, 1]3 and m = 1, 2, . . . ,M . We fixed θ0 = (1/3, 1/3, 1/3) as the true value parameter
and we assume p1(θ) ∼ Dirichlet(θ|α), p2(θ) ∼ Dirichlet(θ|α/c), p3(θ) ∼ Dirichlet(θ|α/3c), with α = (5, 5, 10). The
mixture prior is π (θ) =

∑
i ψipi(θ), then to assess how the ESS of the two priors—p1 and π—varies:

scenario A we fix c = 10 and let vary the mixture weights ψ;

scenario B we fix the mixture weights ψ = (1/3, 1/3, 1/3) and let vary c .

Results for the ESS from Scenario A are depicted in Fig. 1, whereas the correspondent pattern for the distance
δ(n, θ̄, p, q ) defined in Eq. (5) is provided in Figure E.1 in the Support Information material. As it may appear evident,
n
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he larger (smaller) is the weight ψ1 assigned to the informative prior p1 and the closer (further) is the ESSp1 to ESSπ .
When each of the distributions in the mixture is assigned the same weight (panel (b)), the resulting ESS under the mixture
is sensitively lower than the ESS implied by the informative prior. The results plotted in Fig. 1 are rather intuitive and
confirm that the information raised by the mixture never exceeds the information contained in the informative prior if
and only if theorem’s condition in (7) applies, and this happens for all of the four cases in Scenario A.

The results for Scenario B in Figures E.2, E.3 in the Support Information material highlight an important but paradoxical
feature. As c increases—then, as the noninformative Dirichlet becomes even more noninformative—the ESS for π tends
o approximate the ESS under the informative prior p1 (panel (c) and (d)). This is less intuitive and deserves a quick
echnical consideration: the curvature of log(π (θ)) will approximate the curvature of log(p1(θ)) as c will be increased,
nd the information carried by the two priors will tend to coincide. This counterintuitive fact may be read twofold: we
ould need another notion of distance, possibly less sensitive to the values of the hyperparameter c , or we could use other
oninformative priors whose functional form does not depend on c , such as Jeffreys priors (see Section H for a practical
pplication on a phase I trial).
The relevant R code for the simulation study and the computation of the mixture ESS is provided in the Support

nformation material.
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