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Abstract: Although there is no consensus on how to mea-
sure and quantify individual performance in any sport,
there has been less development in this area for soccer
than for other major sports. And only once this measure-
ment is defined does modeling for predictive purposes
make sense. We use the player ratings provided by a pop-
ular Italian fantasy soccer game as proxies for the players’
performance; we discuss the merits and flaws of a vari-
ety of hierarchical Bayesian models for predicting these
ratings, comparing the models on their predictive accu-
racy on hold-out data. Our central goals are to explore
what can be accomplished with a simple freely available
dataset comprising only a few variables from the 2015-
2016 season in the top Italian league, Serie A, and to focus
on a small number of interesting modeling and prediction
questions that arise. Among these, we highlight the impor-
tance of modeling the missing observations and we pro-
pose two models designed for this task. We validate our
models through graphical posterior predictive checks and
we provide out-of-sample predictions for the second half
of the season, using the first half as a training set. We use
Stan to sample from the posterior distributions via Markov
chain Monte Carlo.

Keywords: graphical posterior predictive checking; hierar-
chical model; missing observations; players’ performance;
soccer prediction.

1 Introduction

Compared to the volumes statisticians (professional and
amateur) have written about baseball, and to the growing
statistical literature on sports like basketball and Amer-
ican football, there has been relatively little published
by statisticians about soccer. A few highlights from the
limited statistical literature include: Baio and Blangiardo
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(2010), who use a Bayesian hierarchical model to predict
the outcome of individual matches throughout a season in
the top Italian league, Serie A; Karlis and Ntzoufras (2000),
in which the authors take a frequentist approach to esti-
mating parameters related to the number of goals scored
by specific teams; Dixon and Coles (1997), who use a famil-
iar Poisson model for the number of goals between two
teams and also consider suitable betting strategies based
on their model; and Karlis and Ntzoufras (2009), which
is a Bayesian model for the goal differential between two
teams using a Skellam (Poisson difference) distribution.

In most of the published statistical research on soc-
cer, including the papers mentioned above, the authors
do not focus on modeling the performance of individual
players over the course of a season but rather on some
aspect of the global result of a match between opposing
teams (e.g. goal differential), or on predicting the order
of the league table at the end of a season. Relative to
sports like baseball (Albert 1992) or American football
(Becker and Sun 2016), the performance of individual soc-
cer players is noisy and hard to predict. The dimensions
of the pitch combined with the number of players, the dif-
ficulty of controlling the ball without the use of hands,
and many other factors all contribute to the predictive
challenge.

More primitive than the question of how to model
player performance is how to measure it. Although there is
no consensus on how to quantify individual performance
in any sport, there has been less development in this area
for soccer than for other major sports. And only after mea-
surement is defined does modeling make sense. The old-
est procedure for measuring the individual performance in
the so called goal-based team sports — hockey, soccer and
basketball, among others - is the plus/minus approach
(see Thomas et al. (2013) for some references and recent
improvements). A player is rewarded for being in the game
when positive events occur for their team and penalized
for being in the game when negative events occur. Mea-
suring the individual abilities of players who share the
pitch (or ice or court) for much of their time is challeng-
ing in any sport, but the rarity of goals in soccer makes the
plus/minus system even more problematic.

Although we are interested in modeling the over-
all performance of individual players, we are not yet
convinced that there is an available holistic measure of
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individual performance worth modeling. In fact, even as
the amount and variety of publicly available soccer data
grows — particularly data at the individual player/match
level - the interpretability and predictive relevance of
that data will remain a question. However, we do suspect
that fantasy soccer (Lomax 2006; Bonomo, Duran, and
Marenco 2014) may be more amenable to modeling given
that it has more clearly defined measures of performance.
That is, a prediction task for individual fantasy ratings
could be well posed and also serve as an example of a pos-
sible approach to use in the future when better measures
of individual performance in soccer matches become avail-
able. The outcome of interest is the fantasy rating of each
player in Italy’s top league, Serie A, for each match of the
2015-2016 season. We strongly believe that these fantasy
ratings may be seen as a proxy for the quality of a player’s
performance; in fact, they combine a subjective evaluation
with an objective factor accounting for specific in-game
events. Moreover, given the popularity of such fantasy
games, these ratings are themselves an interesting vari-
able to model. In this paper we present and critique sev-
eral Bayesian hierarchical models (Gelman and Hill 2006;
Gelman et al. 2013) designed to predict the results of
the Italian fantasy game Fantacalcio. We use RStan (Stan
Development Team 2016a), the R (R Core Team 2016) inter-
face to the Stan C++ library (Stan Development Team
2016b), to sample from the posterior distributions via
Markov chain Monte Carlo. As far as we can tell from
reviewing the literature, there have been no published
attempts to use a hierarchical Bayesian framework to
address the challenges of modeling this kind of data.

Our central goals are to explore what can be accom-
plished with a very simple dataset comprising only a few
variables (that are freely and easily available), and to focus
on a small number of interesting modeling and prediction
questions that arise (for instance, those due to the missing-
ness of certain values). For this reason we also gloss over
many issues that we believe should be of interest in subse-
quent research, for instance variable selection, additional
temporal correlation structures, and the possibility of con-
structing more informative prior distributions. Although
we restrict our focus to Fantacalcio, the process of devel-
oping these models and comparing them on predictive per-
formance does not entirely depend on the idiosyncrasies
of this particular fantasy system and is applicable more
broadly.

The rest of the paper is structured as follows. We
briefly introduce the Italian fantasy soccer game Fantacal-
cio and we describe our dataset in Section 2. The mod-
els we fit to the data are presented in Section 3 with
results in Section 4. In Section 5 we carry out a variety
of posterior predictive checks as well as out-of-sample
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prediction tasks. Section 6 concludes. A Supplementary
Material file containing data, code and further analysis is
provided.

2 Data

In Italy, fantasy soccer was popularized by the brand
Fantacalcio edited by Riccardo Albini in the 1990s
(http://www.fantacalcio.it). At the beginning of the
season, Fantacalcio managers are allocated a limited
amount of virtual money with which to buy the players
that will comprise their roster. After every match in Serie A,
the prominent Italian sports periodicals assign each player
a rating, a so-called raw score, on a scale from one to ten.
These are very general and largely subjective performance
ratings and there tends not to be much variability in these
scores. As a means of systematically including specific
in-game events in the ratings, Fantacalcio provides the
point scoring system. Points are added or deducted from
a player’s initial raw score for specific positive or negative
events during the match.
For player i in match ¢ the total rating y; is

Vit = Rit + Py, )

where R is the raw score and P is the point score. Table 1
lists the game features that contribute to a player’s point
score P;; for a given match. Negative ratings are possi-
ble, although not very common. For instance, a goalkeeper
with a raw score of three who also allows four goals would
have aratingy;; = 1.

Since it is very rare for a player to participate in all
matches, some y;; are missing, and this may be due to dif-
ferent reasons. First, player i’s rating for match ¢ will be
missing if the player does not play in the match because
of injury, disqualification, coach’s decision, or some other
reason. In addition, this can occur when a player does not
participate in the match for long enough for their impact

Table 1: Bonus/Malus points in Fantacalcio.

Event Points
Goal +3
Assist +1
Penality saved* +3
Yellow card 0.5
Red Card 1
Goal conceded* 1
Own Goal 2
Missed penality 3

The events marked with a * symbol are only applicable to
goalkeepers.
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Figure 1: The distributions of average ratings by position.

to be judged by those tasked with assigning the subjective

raw score (R;; = 0) or for the player to accumulate or lose

any objective points (P;; = 0).

Modeling the missingness is one of focuses of this
paper. We return to this issue later in Sections 3.2 (mixture
models) and 3.3 (missing data models) when we confront
the challenge it poses for our modeling and prediction
tasks and consider methods for modeling the missingness
that naturally arises in our dataset.

All data for this paper are from the 2015-2016 season of
the Italian Serie A and were collected from the Italian pub-
lication La Gazzetta dello Sport (http://www.gazzetta.
it). We use all of the ratings for every player satisfying the
following two criteria:

— The player participated in at least a third of matches
during the andata (the first half of the season). This
amounts to dropping players who played in fewer than
seven matches in the first half.

— The player participated in the final match of the
andata.

The latter criterion is a simple constraint for considering
only those players regularly enrolled in the squad list for
the last game of the andata — our training set, as explained
in Section 5 — which thus belong to the Italian Serie A in
the second half of the season with high probability. Pro-
fessional European soccer leagues allow for a player to be
transferred to another team (not necessarily in the same
league) at approximately the midpoint of the season, but
only a few players in our dataset ended up changing team
so we simply set each player’s team id in the dataset to
their team at the beginning of the season. This avoid the
complication of accounting for transfers in the modeling

9 10 5 6 7

8 9 10

stage, although it would be interesting to investigate this
in future work. Our final dataset contains ratings for 237
players (18 goalkeepers, 90 defenders, 78 midfielders, and
51 forwards). Figure 1 displays the distributions of average
ratings by position, while Figure 2 shows the bivariate rela-
tionship between average rating and the initial standard-
ized price for each player. Although the full season com-
prises 38 matches for each team, rarely does a player par-
ticipate in all matches. For the 237 players in our data that
meet the two criteria above, the mean number of matches
played is 27.5 with a standard deviation of about 7, and 75%
of these players missed at least five matches.

Notation for observed data

There are N = 237 players and T = 38 matches in the
dataset. When fitting our models we use only the T; = 19
matches from the first half of the 20152016 Serie A season.
The remaining T, = 19 matches are used later for predic-
tive checks. For match t 2 {1, ..., T}, let y;;; denote the
value of the total rating for player i 2 {1, ..., N}, with
position (role on the team) j 2 {1, ..., J}, on a team in
team-clusterk 2 {1,...,K}. To ease the notational burden,
throughout the rest of the paper the subscripts j and k will
often be implicit and we will use y;; in place of y;j.

The players are grouped into /] = 4 positions (forward,
midfielder, defender, goalkeeper) and K = 5 team clus-
ters. The five clusters (Table 2) were determined using
the official Serie A rankings at the midpoint of the sea-
son. The purpose of the team clustering is both to use
a grouping structure that has some practical meaning in
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Figure 2: The distributions of average ratings versus initial
standardized price.

Table 2: The K = 5 team clusters, from weakest to strongest.

Cluster Teams

Palermo, Frosinone, Carpi, Verona
Genoa, Sampdoria, Empoli, Udinese
Bologna, Chievo, Atalanta, Torino
Milan, Fiorentina, Lazio, Sassuolo
Juventus, Roma, Inter, Napoli

v~ WN

Group 5 is headlined by Juventus, the top performing team in Serie
A for the past several seasons.

this context and also to reduce the computational bur-
den somewhat by including cluster-specific parameters
rather than team-specific parameters. We experimented
with team-specific parameters but found that it results in
models that are slower to fit but that yield similar infer-
ences.

There are only two other variables in our limited
dataset. We let h;; = 1 if player i’s team plays match ¢ at
its home stadium and h;; = 0 if the match is played at the
opponent’s stadium. And we use g; to denote the initial
standardized price for player i. These values are assigned
by experts and journalists at the beginning of the sea-
son based on their personal judgement and then updated
throughout the season to reflect each player’s perfor-
mance (http://www.gazzetta.it/calcio/fantanews/
statistiche/serie-a-2015-16/).
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3 Models

Notation for model parameters

The notation we use for model parameters is similar to the
convention adopted by Gelman and Hill (2006) for multi-
level models. According to this, the index variables j[i], ki
code group membership. For instance, if j[1] = 4, then the
first unit in the data (i = 1) belongs to position group 4. If
k[1] = 3, then the first unit belongs to team-cluster 3.

We use a; for individual random effects correspond-
ing to each player i = 1,...,N. The parameters y; and
Bk, + represent, respectively, the team-cluster effect and
the team-cluster effect of the team opposing in match ¢,
with k = 1,...,K. As already mentioned, in our simpli-
fied framework we set the number of team-clusters K = 5.
We denote by p; the position-specific parameters, with
j=1,...,J and J = 4. The standardized prices are multi-
plied by a slope §;, which is allowed to vary across the J
positions. Because we are interested in detecting trends
in player ratings, we also incorporate the average rating
up to the game ¢ 1, y;; 1, which is multiplied by a fac-
tor Ay;) estimated from the data. In addition, the effect of
home and away matches is accounted for in the 6 parame-
ter. For the mixture model in Section 3.2, the same average
rating y; . 1 is also multiplied by a coefficient {j; in order
to model the probability of participating in the match t. We
anticipate that in their posteriors A and { (here denoted
as vectors) will be meaningfully different from zero. Since
we work in a Bayesian framework, all parameters will be
assigned prior distributions, which in turn may depend
on hyperparameters that are either fixed or themselves
estimated from the data.

3.1 Hierarchical autoregressive model (HAr)

As above, let y;; (with indices j and k implied) denote the
total rating (1) for player i in match t. For our first model, we
code all the missing ratings y as zeros. This makes sense if
we are (and, in part, we are) interested in the annual cumu-
lative rating of a given player, or of a given subset of play-
ers (this is investigated graphically later in Section 5). Or,
for instance, experts and scouts may be interested in esti-
mating the number of goals that will be scored by Roma’s
forwards. Since the number of goals heavily depends on
the number of games played, it makes sense to assign a
value of zero for any missed matches (unobserved player
ratings) as they should not contribute to the total number
of goals scored. Later, in Section 3.3, we will take a differ-
ent approach in which missing values are actually treated
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as unobserved and we specify a full joint probability model
for both the observed and unobserved ratings.

We begin with a standard hierarchical autoregressive
model

Yit Normal (rll.b Uy) ’ (2)

where n; is the linear predictor

Nit = Ao+ i+ By ¢ + Vi +P51 + 6519 +AjVie 17+ 60hit,
3
@ is the intercept, and oy is the standard deviation of the
error in predicting the outcome. The term autoregressive
is used here for indicating the inclusion of the average rat-
ing up to the game t 1 in the model. As we are fitting
our models using Stan (Stan Development Team 2016b),
we follow its convention of parameterizing normal dis-
tributions in terms of standard deviation rather than the
precision or variance.
The individual-level, position-level, and team-cluster-
level parameters are given hierarchical normal priors,

a; Normal(0, 04), i=1,...,N
vk Normal(0, oy), k=1,...,K
B Normal(0, 0p), k=1,...,K
p; Normal(0, 0p), j=1,...,] (4)

with weakly informative prior distributions for the remain-
ing parameters and hyperparameters,

ao Normal (0, 5)
6 Normal (0, 5)
0; iid Normal(0,5), j=1,...,J
A j=1,...7
(06, Oa, 0y, 04, 0p) id Normal™ (0, 2.5),
oy Cauchy™ (0, 5),

Normal (0, 1),

where Normal™ and Cauchy™ denote the half-Normal and
half-Cauchy distributions. See Gelman et al. (2006) and
Gelman (2016) for a discussion related to the choice of
these priors for the scale parameters. Note that center-
ing the individual-level, the team-cluster-level, and the
position-level parameters in (4) at ua, py, Mg, and Up
would make the model nonidentifiable, because a con-
stant could be added to each of these hyperparameters
without changing the predictions of the model. This is the
motivation for centering these prior distributions at zero
and including the global intercept.

A previous sensitivity analysis with different input val-
ues for these hyperparameters suggested no variation in
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the posterior estimates. However, other researchers and/or
sports experts may have a particular instinct about these
priors, and be more subjective in their elicitation. A deep
illustration on subjective priors in sports analytics is pro-
vided by Silva and Swartz (2016), where the prior elicita-
tion is driven by the instincts of the experts and of the
gambling websites in a logistic regression framework.

3.2 Mixture model (MIX)

Even if we found that some players have a tendency to
be ejected from matches due to red cards, for instance, or
tend to suffer injuries at a high rate, it would still be very
challenging to arrive at sufficiently informative probabil-
ity distributions for these events. Even with detailed player
histories over many seasons, it would be hard to predict
the number of missing matches in the current season. Nev-
ertheless, we can try to incorporate the missingness behav-
ior intrinsic to the game into our models. Assuming that
it is very rare for a player to play in every match during a
season, we can try to model the overall propensity for miss-
ingness. A general way of doing this entails introducing a
latent variable, which we denote V;; and define as

Vo = 1, if player i participates in match ¢,
=
l 0, otherwise.

If for each player i we let 71;; = Pr(V; = 1), then we
can specify a mixture of a Gaussian distribution and a
point mass at 0 (Gottardo and Raftery 2008)

P Vit I Mie> 0y) = mie Normal (yi¢ j nit, 0y)+(1 m3¢) 6o, (5)

where § is the Dirac mass at zero and 7;; is the same linear
predictor as before. The probability 77;; is modeled using a
logit regression,

mie = logit ! po+Guie 1 5 (6)

which takes into account predictors that are likely to cor-
relate with player participation. The variable y; ; ; is the
average rating for player i up to match ¢ 1, and pg is an
intercept for the logit model. How to model ;s could be
the subject of entire papers, but better models would likely
require variables beyond what we have in our dataset
(e.g. injury histories). Our simplistic model will suffice for
our purposes of exploring what we can do with only this
dataset. For the new parameters introduced in (6) we use
the weakly informative priors

po Normal(0, 2.5),

G iid Normal(0,1), j=1,...,].
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The models for the group-level parameters and the hyper-
priors are the same as in 3.1.

3.3 Refitting the HAr model accounting for
missing data

As we have already mentioned, it is difficult to deal with
the issue of missing data in such a way as to yield a reason-
able estimate of the cumulative ratings over a season. The
MIX model may be seen as a natural attempt at modeling
the missingness, while, to ease the problem, in the initial
HAr model missing values were treated as zeros and not
modeled. We have already speculated about the legitimacy
of this approach, but we are only partially interested in the
cumulative rating over the entire season and are also inter-
ested in assessing the predictive accuracy of our models
game by game. That is, we also want to answer the ques-
tion: how will a player perform if they play in the match?
One way to do this is by treating each missing player rating
as an unknown parameter rather than somewhat arbitrar-
ily fixing it at zero. As broadly outlined in Gelman et al.
(2013), Bayesian inference draws no distinction between
missing data and parameters, so the target distribution
is the joint posterior distribution of the missing data and
other model parameters conditional on the observed data.
Let y represent the complete data we could have
observed in the absence of missing values; we split our
data matrix into two subsets, y = (y°%%, y™), where y°/°
denotes the observed values and y™* denotes the missing
values. We also define I to be the inclusion matrix such
that I;; = 1 if y;; is observed and I;; = O if y;; is missing.
In this setup, y°? are data and y™* are parameters. For
convenience, we specify our new augmented model as

y?tbs, ifIl't =1

Vit = . i=1,...,N, t=1,...,T
&it, if iy =0,
@)
where y9%% is an observed rating for player i in match ¢

and each ¢ is a parameter. The same idea is then incorpo-
rated into the HAr model from 3.1. We refer to this modified
model as the HAr-mis model.

4 Results

4.1 Estimates

We fit the models via Markov chain Monte Carlo using
RStan Stan Development Team (2016a), the R interface to
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Figure 3: Posterior means standard deviations for the model
parameters common to the HAr, HAr-mis, and MIX models. By ; and
vk are the parameters for the opposing team-cluster in match t and
the player’s team-cluster (k = 1the weakest, k = 5 the strongest).
The parameters g; (coefficients on initial price), A; (coefficients of
the lagged average rating) and p; all vary by position (1 = Forward,
2 = Midfield, 3 = Defender, 4 = Goalkeeper). 6 is the coefficient
for the home/away predictor. gy is the individual-level standard
deviation and the other ¢’s are the hierarchical standard deviation
parameters. For the MIX model, the {’s are the coefficients on the
lagged average rating from (6).

the Stan C++ library Stan Development Team (2016b),
and monitored convergence as recommended in Stan
Development Team (2016c). Figure 3 shows the parameter
estimates.

For all models, the B, y and 6 vectors are almost all
shrunk towards their grand mean 0, with little variability.
For the position-specific vector p, the HAr-mis and MIX
models estimate slightly positive values (approximately
0.5) for midfielders (p,) and defenders (p3), while for the
HAr model these parameters are shrunk close to zero. The
goalkeeper effect (p4) is slightly positive for the HAr model
but clearly negative for the HAr-mis and MIX models. For
all models these position-level parameters have larger pos-
terior uncertainties than the other parameters. All three
models recognize a slight advantage due to playing at
home (6 > 0). Also in Figure 3 we see that for the A’s, the
coefficients on the lagged average ratings, the estimates
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obtained from the HAr model are much larger than those
obtained under the HAr-mis and MIX models, which again
give nearly identical estimates. Since for every match day ¢
these coefficients are multiplied by the lagged average rat-
ing yi: 1, we believe that the larger A estimates from the
HAr model are the result of coding the missing values as
Zero0s.

For the MIX model only, there are also additional
parameters (1, .. ., {4 that scale the lagged average rating
in the logit model (6). These parameters are all positive —
which corresponds to the intuition that higher ratings are
associated with higher probabilities of participating in the
next match — and they also exhibit non-negligible varia-
tion across positions (for goalkeepers, {4, the estimated
association is strongest).

4.2 Inference through hypothetical
data

In this section we give an example of a more interesting
comparison focusing on simulating hypothetical players
rather than comparing parameter estimates.

Comparing parameter estimates across models is stan-
dard practice, but we are more interested in the implica-
tions of the parameters for the outcome variable rather
than the parameters themselves. For our purposes it
should be more informative to simulate outcomes under
each of the models for players differing only in their posi-
tion. We can then directly compare the variability in the
ratings for these hypothetical players. Note that compar-
ing predictions rather than parameter estimates would
be even more essential if we were fitting logistic regres-
sion models (or other GLMs) rather than Gaussian linear
models.

We predict ratings for several players at different posi-
tions on the field and with the average position price in
virtual money, all on the same cluster team, all playing
against the same cluster team, and all playing at their
home stadium. Figure 4 shows the predicted ratings from
each of the models for 19 new matches and N = 237 (the
size of our dataset) hypothetical players. For the HAr
model, the variability within positions appears to be large
when compared with the same variability in the predic-
tions from the the HAr-mis model and, a bit less, the MIX
model. Moreover, the different positions appear quite dis-
tinct according to the HAr-mis model, less under the MIX
model and quite overlapped under the HAr model. The
predicted values for the HAr model are shrunk together
and turn out to be much too low for each position. This
failure of the HAr model can be explained by the fact that
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it treats missed matches as zeros and, then, it will tend to
favor players with fewer zeros.

Conversely, the simulations from the HAr-mis model
are more clearly separated into strata corresponding to the
different positions and the hierarchy of positions is cor-
rect: forwards tend to register the highest simulated rat-
ings, then midfielders, defenders, and goalkeepers. The
MIX model is less able to clearly separate the positions in
the predictions but it does get the correct ordering on aver-
age. As expected, it also predicts a non-negligible number
of zeros (missing values).

Here we only show the comparison made by varying
a player’s position, but analogous visualizations can be
made to explore the effect of changing other variables.

5 Posterior predictive checks and
predictions

Now that we have estimated all of the models, we turn
our attention to evaluating the fit of the models to the
observed data as well as the predictive performance of the
models on hold-out data. We use the 19 match days com-
prising the first half of the Serie A season - the andata
— as training data, and for every player in the dataset we
make in-sample predictions for those 19 matches as well
as out-of-sample predictions for the remaining 19 matches
— the ritorno. As usual in a Bayesian framework, the pre-
diction for a new dataset may be directly performed via
the posterior predictive distribution for our unknown set of
observable values. Following the notation of Gelman et al.
(2013), we denote by y a generic unknown observable. Its
distribution conditional on the observed y is

z Z
p (¥, 6jy)do =
0 0

p(iy) = p (Fif)p(Biy)do, (8)

where the independence of y and y conditional on 6
is assumed. We are also implicitly conditioning on the
observed predictors. Sampling from this posterior predic-
tive distribution will allow us to both assess the fit of
the model to observed data and also make out-of-sample
predictions that average over the posterior.

5.1 In-sample posterior predictive checks

To assess how well the models fit the training data, for
each draw of the parameters from the posterior distri-
bution we draw a dataset from the posterior predictive
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Simulated ratings under each model
for hypothetical players differing only by position

DE GRUYTER
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Figure 4: Predicted ratings of hypothetical players differing only in their position. Predictions from each of the three models are shown for
19 matches for each of 237 players (the size of our dataset), all playing at home (h; = 1), all playing on a team in cluster k = 3 against an

opponent in cluster k = 3, with standardized average position price g;;, j =1, ...

distribution of the outcome under each of the models. We
should expect the in-sample predictive performance to be
better than performance on out-of-sample prediction tasks
(Gelman, Hwang, and Vehtari 2014; Vehtari, Gelman, and
Gabry 2017). Figure 5 shows an example of a graphical pos-
terior predictive check focusing on the cumulative ratings
for each player over the matches in the training data. For
illustration purposes, here we only show the results for
one team, Napoli, but equivalent plots could be made anal-
ogously for all the other teams. The dashed black lines
represent the observed values, while the red, green, blue
lines represent predictions from the HAr, HAr-mis and MIX
models, respectively.

For many of the players all of the models make reason-
able predictions. However, for players with many missed
matches the HAr and MIX models outperform the HAr-
mis model (see the plot for El Kaddouri, for instance). The
HAr-mis model will perform well on many of the predictive
tasks, but it is not designed to predict in-sample cumula-
tive ratings. The cumulutative rating is very sensitive to the
number of missing values, but for each missing value the
HAr-mis will predict a plausible rating for if the player had
played instead of a zero.

Figure 6 provides a different graphical check of the
model fitting. Each row of plots shows the distribution of a
test statistic T (y"P) computed over the replicated datasets
y"® generated from the posterior predictive distribution
under each of the models. The vertical black lines indi-
cate the value of T (y), the statistic computed from the
observed data. If we consider the distributions of these

JJ,i=1,...,N.

statistics — mean, median, minimum, maximum, and stan-
dard deviation — we immediately notice that the three
models differ in their ability to replicate many of these
features of the data. According to the mean, the median
and standard deviation, the MIX model seems to be best
at capturing these aspects of the training data.

In the fourth row we can see that the HAr model
severely underestimates the minimum rating in the data,
the HAr-mis model predicts a reasonable distribution of
the minimum, and for the MIX model the distribution for
the minimum is highly concentrated around 0, which is
due to the nature of the model.

On the other hand, it is the MIX and the HAr-mis mod-
els that substantially underestimate the maximum rating,
while the HAr model is able to predict plausible maxi-
mums when compared to the observed value. However,
Figure 7 reveals that although the HAr-mis model fails to
predict the overall maximum, it does predict reasonable
maximum values for defenders and goalkeepers. Its failure
to reproduce the maximums for the forwards and midfield-
ers is explained by the rarity of their maximums (17 and
14, respectively) in the training data. Only one rating as
high as 17 was observed in the first half of the season and
there were only three ratings of at least 17 observed over
the full season (about 1 in every 2000 observed ratings).
To allow the HAr-mis model to predict such extreme val-
ues it may be possible to use a t-distribution instead of
a Gaussian model, but for our purposes in this paper the
ability of a model to replicate these very rare ratings is not
so essential.
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Observed vs. predicted cumulative ratings for selected team Napoli
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Figure 5: Observed vs. median predicted cumulative ratings for selected team Napoli during the first half of the 2015-2016 Serie A season.

5.2 In-sample and out-of-sample calibration

We are also interested in the calibration of the models on
both the training and hold-out data. In Figures 8, 9, and 10
we display the median predictions and 50% posterior pre-
dictive intervals under the HAr, MIX and HAr-mis models
for our selected team Napoli, overlaying the observed data
points. In a broader analysis we could plot and analyze
these graphs for each team in Serie A under each of the
models.

In a well-calibrated model we expect half of the
observed values to lie outside the corresponding 50%
intervals. By this measure we can see in the plots that
the HAr-mis and MIX model have decent but not excellent
calibration, since for many of the players — particularly

the goalkeeper and defenders — the 50% intervals cover
more than 50% of the observed (blue) points. Conversely,
for the volatile superstar Higuain (an outlier even among
forwards) only a many fewer points fall inside the inter-
vals. Although the HAr model seems to be generally bet-
ter calibrated, its main flaw consists in overestimating
the defenders (and some other players) in the second
part of the season, as already alluded to Section 4.2. Fur-
thermore, the HAr model appears to identify an increas-
ing trend in the ratings that is not actually supported
by the data. As will be clear in Section 5.3, the out-of-
sample predictions from the HAr model will in fact tend
to be unreliable, while the MIX and the HAr-mis mod-
els tend to both better detect the best players on aver-
age.
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HAr model MIX model HAr—mis model
Mean Mean Mean
4.5 4.6 4.7 4.8 4.55 4.65 475 4.85 6.0 6.1
Median Median Median
450 475 500 525 550 5.3 54 5.5 5.6 5.9 6.0 6.1
SD SD SD
2.85 2.90 2.95 3.00 3.05 3.10 290 295 3.00 3.05 1.50 155 1.60 1.65 1.70
Min Min Min
-9 -6 -3 0 -20 -1.5 -1.0 -05 00 -2 -1 0 1
Max Max Max
14 16 18 20 12 14 16 12 14 16

Figure 6: In-sample posterior predictive checks of test statistics for the HAr, MIX and HAr-mis models. For a particular test statistic T the
plots show T(y"P) (histogram) and T(y) (thick vertical line). Each column corresponds to one of the three models, and each row to a dif-
ferent statistic T (mean, median, sd, minimum, maximum). We can see that the HAr model predicts much lower minimum values than the
observed minimum. On the other hand, under the MIX model the distribution for the minimum is highly concentrated around zero.

HAr—mis model: maximum by position
Forward Midfield Defense Goalkeeper

10 12 14 16 18 10 12 14 16 18 10 12 14 16 18 10 12 14 16 18

Figure 7: Posterior predictive check for T(y) = max over different positions for the HAr-mis model. The thick vertical line is the observed
value.
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Calibration for the HAr model for selected team Napoli
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Figure 8: Calibration check for the HAr model for selected team Napoli. Blue points are observed values y°, red points are the zeros. The
light gray ribbons represent 50% posterior predictive intervals and the overlaid dark gray lines are the median predictions. The vertical
black lines separate the in-sample predictions from the out-of sample predictions.

5.3 Out-of-sample predictive checks
RMSE on hold-out data

For out-of-sample prediction we fit the models over the
T = 19 matches in the first half of the season and then
generate predictions for the T* = 19 matches in the sec-
ond half of the season. For each playeri = 1,..., N and for
each posterior predictive simulations = 1,...,S we com-
pute the root mean square error (RMSE) over the matches
T+1,...,T+ T in the held out data (corresponding to
matches 20 through 38 of the season),

v
Prr 9 . 2
t=T+1 Yir Vit

RMSE® = -

©)

In the above equation )"/Ef) is the sth simulation from the

posterior predictive distribution of the predicted rating for
player i at match t, and y; is the corresponding observa-
tion. From this we obtain an RMSE distribution for each
player.

Averaging over the simulations for each player and
then averaging over players within positions we compute

Puizy . 1P
Hi2)g 17 S_ RMSE®

RMSE; = — =1 ,
) #(i 2 )

3])

i=1,...

where #(i 2 j) is the number of observations of position
group j. Figure 11 shows these position-average RMSE val-
ues under each of the three models. The trend is similar
across all models and suggests that our predictive abil-
ity is worst for forwards. Comparing across models, the
missing data models (MIX and HAr-mis) do better than the
HAr model, with the HAr-mis performing best. The (good)
performance of this model is due to the fact that it does
not predict future missing values. That is, the RMSEs com-
puted above are then averaged over the missing values in
the second part of the season. This plot is further confir-
mation that modeling the missing values is important for
predictive accuracy on hold-out data.

It is worth noting that in a dynamic framework, where
the models could be updated between matches, the RMSEs
would almost certainly be much lower than the RMSEs
computed for the second half of the season in one batch.
For instance, fitting our models at time t and projecting for
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Calibration for the MIX model for selected team Napoli
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Figure 9: Calibration check for the MIX model for selected team Napoli. Blue points are observed values y°%%, red points are the missing
values. The light gray ribbons represent 50% posterior predictive intervals and the overlaid dark gray lines are the median predictions. The
vertical black lines separate the in-sample predictions from the out-of sample predictions.
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Calibration for the HAr—mis model for selected team Napoli
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Figure 10: Calibration check for the HAr-mis model for selected team Napoli. Blue points are observed values y°, red points are the
missing values. The light gray ribbons represent 50% posterior predictive intervals and the overlaid dark gray lines are the median

predictions. The vertical black lines separate the in-sample predictions from the out-of sample predictions.
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RMSE of out—of—sample predictions
by model and position
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Figure 11: Average RMSE for the different positions for each model.
The trend is the same across models: better predictions are
obtained for goalkeepers, followed by defenders, midfielders, and
finally forwards. The HAr-mis and MIX models register the lowest
RMSE.

match t + 1, we could account for the disqualification of
certain players, injuries, etc. If we know in advance that
a player is disqualified for the next match we would have
Vit+1 = Vit+1 = 0, and the corresponding RMSE would
be zero.

Roster selection

Based on average predicted ratings for the held-out data
from the second half of the 2015-2016 Serie A season,
Figure 12 displays the best teams of eleven players that can
be assembled from the available players according to each
of the models using their posterior medians. Also shown is
the best team assembled using the observed ratings from
the same set of matches. Here we assume that, in addi-
tion to a single goalkeeper, a team is comprised of four
defenders, three midfielders, and three forwards. This is
a common structure, although certainly many other for-
mations are also used. As is evident at a first glance, the
predictions obtained from the HAr model are quite ineffi-
cient. As we saw in the calibration plots in Figure 8, the
HAr model tends to overestimate the player ratings, and
we can see here that the projected ratings for the top play-
ers are quite far from their averages computed from the
observed ratings in the hold-out data.

The rosters assembled based on the predictions from
the HAr-mis and MIX models are identical except for the
ordering of the players within the positions. Four of the
eleven players (Acerbi, Pogba, Hamsik, Higuain) from the
team based on the actual ratings are included in the
HAr-mis and MIX teams and, of the players that don’t
match, several are close. Dybala, the third best forward

L. Egidi and ). Gabry: Predicting soccer performance = 155

according to the models, is also rated highly (fifth best)
according to the observed ratings. Rudiger, the second best
defender according to both models, also has high observed
mean rating (the eighth best among the 90 defenders).
And Bonucci, one of the defenders included based on
the observed ratings is also ranked highly by the HAr-mis
model (ninth best) and MIX model (eleventh best).

Informally, this is further evidence that modeling the
missingness allows us to obtain better out-of-sample pre-
dictions. Unlike the HAr model, the rosters selected by the
MIX and the HAr-mis models appear to be quite competi-
tive, which confirms the better performance we saw earlier
in both the RMSE and the calibration comparisons.

6 Discussion

Although we are interested in our predictions for their
own sake, our primary goal in this paper has been of an
exploratory rather than confirmatory nature. Given the
lack of published research on modeling this kind of data
within a Bayesian framework, we hope our proposed mod-
els and process will be useful to other researchers inter-
ested in working on individual-level predictions in the
presence of noisy soccer data.

We proposed various hierarchical models for predict-
ing player ratings and fit them according to two different
scenarios: in the first scenario the HAr treated the miss-
ing values as zeros; in the second scenario the MIX and
the extended HAr-mis models allow for modeling the miss-
ing values themselves. We think the second framework
is appealing in theory and we found in practice that the
predictive performance is good both in-sample and out-
of-sample. The HAr-mis and the MIX models yield similar
posterior estimates, but they differ in their prediction abil-
ity, as suggested by the RMSE and calibration plots. The
HAr-mis provides a simplicistic estimate conditioned on
playing a given game, but it does not model the propensity
to miss a game. We would suggest using the MIX model for
practical purposes, since it naturally allows for the inclu-
sion of more predictors and covariates associated with the
probability of missing a game. Furthermore, there is not
an appreciable loss of utility adopting the MIX model for
assembling a good roster, which is the main task for each
manager.

As expected, we found that a player’s position is, in
most cases, an important factor for predicting the Fan-
tacalcio ratings. However, it is somewhat counterintu-
itive that the inferences from these models suggest that
the quality of a player’s team, the opposing team, and
the initial fantasy price do not account for much of the
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Figure 12: Best teams according to out-of-sample prediction of average player ratings for the HAr, MIX and HAr-mis model (Panels B, C, D)
compared to the observed best team (Panel A) for the second part of the season. The averaged ratings are computed for those players who

played at least 15 matches in the second half of the season.

variation in the ratings (net of the other variables). It
is also notable that the association between the current
and lagged performance ratings — expressed by the aver-
age lagged rating - is slightly different from zero after
accounting for the other inputs into the models. Future
research should consider whether other functional forms
for describing associations over time are more appropri-
ate, to what extent the inclusion of additional information
in the models (e.g. injury data) improves the predictive per-
formance, and if more informative priors can be developed
at the position and team levels of the models. As is, the
models may be over-shrinking these parameters. Another
question to assess in the future is the division into training
and testing datasets. In this paper we split the season in
half, but these models should also be useful dynamically,
using data available through match day ¢ to predict rating
for match day ¢ + 1.

The recent successes in the soccer analytics industry
are due in large part to the increasing number of avail-
able metrics for analyzing and describing the game. How-
ever, even as the amount and variety of publicly avail-
able soccer data grows — particularly data at the individ-
ual player/match level — the interpretability and predictive
relevance of that data will remain a question. In fact, it
is not straightforward to identify whether a player is or
is not performing well — or collecting more point scores
in the Fantacalcio framework — based on metrics such
as the total distance run over the course of a match, the
number (or percentage) of passes successfully completed,
the total number of shots, the number of shots on target,
or the number of “dangerous” attacks. According to our
current knowledge, the only attempt at using these and
many other metrics for measuring player performance is
the OPTA index, which positively weights certain game
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features (e.g. goals, assists, shots, minutes) and negatively
weights others (e.g. missed passes, yellow cards, missed
goals, etc.). At least we are not aware of other attempts but
we do not have proprietary information about what teams
and other companies are doing (see www . optasports.com
for further details about the firm and its activity). Despite
its appeal, the weighting used for the index appears not
to be formulated using statistical methodology and tools
like principal component analysis, cluster analysis, or any
kind of regression analysis.

Compared to attempts like the OPTA index, our rat-
ings may be crude approximations to player performance
since they gloss over many games events. But the formu-
lation of an index based on as many variables as possible
for describing the players’ performances has not been the
aim of this paper. The attractiveness of our approach — not
necessarily all of our particular choices in model construc-
tion but our approach in general - is that it is based on a
coherent statistical framework: we have an outcome vari-
able y (the player rating) that is actually available, proba-
bility models relating the outcome to predictors, the ability
to add prior information into an analysis in a principled
way, and the ability to propagate our uncertainty into the
predictions by drawing from the posterior predictive dis-
tribution. Our approach is also transparent, fits naturally
into powerful statistical frameworks for model criticism
(e.g. posterior predictive checking), and can easily be mod-
ified by anyone who has different ideas about the form of
the relationship between the outcome and predictors.
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