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Preface

This book contains a selection of the papers presented during the 48th Scientific
Meeting of the Italian Statistical Society (SIS2016), held in Salerno on June 8–10,
2016.

This biennial conference is a traditional national and international meeting for
connecting researchers in statistics, demography, and applied statistics in Italy. The
conference aims at bringing together national and foreign researchers and practi-
tioners to discuss recent developments in statistical methods for economics, social
sciences, and all fields of application of statistics.

The Scientific Programme Committee provided a balanced and stimulating
program that appealed to the diverse interests of the participants.

This book of selected papers is organized in chapters each related to a theme
discussed in the meeting. In the editing process, we reordered the themes and
collapsed some of them. The result still resembles the large variety of topics
addressed in Salerno.

From the modern data sources and survey design issues to the study of the
measures of sustainable development, the reader can find a large collection of
research topics in Statistical Methods and in Applied Statistics and Demography.

In this respect, the papers included in this volume provide a comprehensive
overview of the current Italian scientific researches in theoretical and applied
statistics.

1. Open data and big data in public administration and official statistics
2. Survey sampling: theory and application
3. A recent debate in Statistics
4. Statistical algorithms
5. Ordinal and symbolic data
6. Statistical models and methods for network data
7. Forecasting time series
8. Spatial analysis
9. Issues on ecological and environmental statistics

v



10. Statistics and the education system
11. Economic and financial data analysis
12. Sustainable development: theory, measures, and applications

The Scientific Programme Committee, the Session Organizers, the local hosting
University, and many volunteers have contributed substantially to the organization
of the conference and to the referee process to obtain this book. We acknowledge
their work and the support of our Society. Particularly, we wish to thank Marcella
Niglio for her continuous support and assistance in the editing of this book.

Wishing you a productive and stimulating reading,

Salerno, Italy Cira Perna
Pisa, Italy Monica Pratesi
Toulouse, France Anne Ruiz-Gazen
October 2017
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Maxima Units Search (MUS) Algorithm:
Methodology and Applications

Leonardo Egidi, Roberta Pappadà, Francesco Pauli
and Nicola Torelli

Abstract An algorithm for extracting identity submatrices of small rank and pivotal

units from large and sparse matrices is proposed. The procedure has already been

satisfactorily applied for solving the label switching problem in Bayesian mixture

models. Here we introduce it on its own and explore possible applications in different

contexts.

Keywords Identity matrix ⋅ Pivotal unit ⋅ Label switching

1 Introduction

Identifying and extracting identity matrices of small rank with given features from

a larger, possibly sparse, matrix could appear just of theoretical interest. However,

investigating the structure of a given sparse matrix is not only of theoretical appeal

but can be useful for a wide variety of practical problems and for statistics.

This kind of matrix appears in clustering ensembles methods, which combine da-

ta partitions of the same dataset in order to obtain good data partitions even when

the clusters are not compact and well separated. See, for instance, [1] where mul-

tiple partitions of the same data (an ensemble) are generated changing the number
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of clusters and using random cluster initializations within the K-means algorithm.

Another situation where the global number of zeros of a matrix has a relevant role is

in analysing the structure of a matrix of factor loadings; [4] introduces and formu-

lates a statistical index in order to assess how good is the solution based on a factor

analysis.

Matrices with a similar structure and for which the sparseness has to be taken into

account appear in the so-called cost’s optimization theory. [5] builds the well-known

Hungarian method, which uses the zeros matrix elements for finding an optimal as-

signment for a given cost matrix; [6] presents a generalization of such algorithm and

an application to a transportation problem.

In this paper we discuss the so-called Maxima Units Search algorithm (hereafter

MUS). It has been introduced in [2] and used in the context of the label switching

problem [3, 8]. In Bayesian estimation of finite mixture models label switching arises

since the likelihood is invariant to permutations of the mixture components. The

MUS procedure has proved to be useful in detecting some specific units—one for

each mixture component—called pivots, from a large and sparse similarity matrix

representing an estimate of the probability that pairs of units belong to the same

group. The MUS algorithm is then more generally aimed at identifying for a given

partition of the data those units that are not connected with a large number of units

selected from the other groups.

A formal description of the MUS algorithm is provided and discussed. In fact, we

argue that the proposed approach is of a broader interest and can be used for different

purposes especially when the considered matrix presents a non-trivial number of

zeros.

In Sect. 2 we introduce the notation, the algorithm and the main quantities of in-

terest. A simulation study conducted for exploring the sensitivity of the algorithm to

the choice of some parameters is presented in Sect. 3. Possible applications are illus-

trated in Sect. 4: in the first example we report the pivotal identification mentioned

above, which represents the initial motivation for the procedure. Finally the method

is employed to study a small dataset concerning tennis players’ abilities. Section 5

concludes.

2 The Methodology

Let us consider a symmetric square matrix C of dimensions N × N containing a non-

negligible number of zeros and suppose that each row’s—or equivalently column’s—

index represents a statistical unit. Moreover, let us suppose that such N units either

naturally belong toK different groups or have been preliminarily clustered into them,

for instance via a suitable clustering technique.

For some practical purposes an example of which will be given in Sect. 4, we may

be interested in detecting those units—one for each group—whose corresponding

rows have more zeros than the other units. We preliminarily refer to these units as
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the maxima units. More precisely, the underlying idea is to choose as maxima those

units j1, ..., jK such that the K × K submatrix of C, Sj1,...,jK with only the j1, ..., jK rows

and columns has few, possibly zero, non-zero elements off the diagonal (that is, the

submatrix Sj1,...,jK is identical or nearly identical). Note that an identity submatrix of

the given dimension may not exist. From a computational point of view, the issue is

non-trivial and involves a global search row by row; as N, K and the number of zeros

within C increase, the procedure becomes computationally demanding.

Before introducing mathematical details, let us denote with i1, ..., iK a set of K
maxima units and with Si1,...,iK the submatrix of C containing only the rows and

columns corresponding to the maxima. The main steps of the algorithm are sum-

marized below.

(i) For every group k, k = 1, ...,K find the candidate maxima units j1k , .., j
m̄
k within

matrix C, i.e. the units in group k with the greater number of zeros correspond-

ing to the units of the other K − 1 groups, where m̄ is a precision parameter
fixed in advance. Let Ph

k , h = 1, ..., m̄, k = 1, ...,K be the entire subset of units

belonging to the remaining K − 1 groups which have a zero in jhk , that is

Ph
k = {jl, l ≠ k ∶ C(jhk , jl)

= 0}, h = 1, ..., m̄, k = 1, ...,K

where C(jhk , jl)
is the element (jhk , jl) of the matrix. We collect a total number of

m̄K candidate maxima, m̄ for every group.

(ii) For each of these m̄K units, count the number of distinct identity submatrices

of C which contain them, constructed by taking a given candidate h and K − 1
elements of the corresponding set Ph

k . Let us denote this quantity with

Mjhk
= #{Sj1,...,jk−1, jhk , jk+1,...,jK | ji ∈ Ph

k , i = 1, ..., k − 1, k + 1, ...,K}. (1)

(iii) For each group k, k = 1, ...,K, select the unit which yields the greatest number

of identity matrices of rank K. In mathematical terms

ik = argmax

jhk∈{j
1
k ,...,j

m̄
k }
Mjhk

, h = 1, ...m̄, k = 1, ...,K. (2)

The steps of the described algorithm are illustrated via a numerical example in

Fig. 1. The choice of m̄ is crucial in terms of the algorithm performance. This param-

eter is a sort of benchmark for the size of the K subsets where the algorithm searches

for the K maxima units: the greater is this value, the larger is the set of possible

candidates involved in Eq. (2). Conversely, a bigger value enhances the possibility to

build a larger set Ph
k and obtain a more accurate result. In Sect. 3 we deal with this

issue and we consider different choices for the precision parameter m̄.
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Fig. 1 Graphical scheme of the MUS algorithm for K = 3 and precision parameter m̄ = 2.

S. 𝟏 Chooses the candidate maxima, the two units for each group with the greatest number of zeros.

S. 𝟐 Identifies for each candidate the subsets P of units which belong to a different group (than the

candidate) and have a zero in correspondence of it; then builds all the identity matrices of rank three

which contain the candidates. S. 𝟑 Detects the maxima as the three units—one for each group—that

appear the greatest number of times in an identity matrix
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3 Simulation Study

The task of this section is to investigate the performance of the MUS algorithm and

its sensitivity to the choice of N and m̄, for a fixed K, which is determined by some

clustering technique or a given grouping of the units. To this aim, we simulate a

symmetric N × N matrix C where the element (i, j) is drawn from a Bernoulli distri-

bution with parameter p. As mentioned in Sect. 2, the i-th row’s index, i, i = 1, ...,N,

is associated to a statistical unit of interest and each unit is here randomly assigned

to group k, k = 1,… ,K, with probability 1∕K. We consider three different values of

p, i.e. p = 0.8, 0.5, 0.2.

Tables 1, 2 and 3 display the maxima units and the corresponding CPU times in

seconds (in brackets) according to the considered scenarios. As expected, the proce-

dure is sensitive to the choices of input weights, both in terms of units selection and

computational times.

The first issue one may immediately notice is that, regardless of the weights used

for generating data, the computational burden rises dramatically when K > 3. Espe-

cially when N = 1000, the CPU time is huge if compared to the time spent in the

same framework—same m̄ and weights— for K = 2 or K = 3. As the probability p
decreases (from 0.8 to 0.2) the number of zeros becomes larger and, consequently,

the CPU time required keeps growing regardless of the values of N and m̄. A second

remark is that, by fixing N and K, the choice of the precision parameter m̄ does not

seem to affect significantly the performance of the procedure: as m̄ increases, there

is limited variation in the units detection and the difference in the required time be-

tween m̄ = 1 and m̄ = 20 remains relatively small, as can be seen from Tables 1, 2

and 3. This is suggesting that even the choice of a small precision parameter—e.g.

m̄ = 5—may be accurate enough for detecting the maxima.

4 Applications

4.1 Identification of Pivotal Units

As broadly explained in [2], the identification of some pivotal units in a Bayesian

mixture model with a fixed number of groups may be helpful when dealing with the

label switching problem [3, 8].

LetN be the number of observations generated from the mixture model. Consider,

for instance, the probability of two units being in the same group. Such quantity may

be estimated from the MCMC sample and denoted as ĉij. For details, see [2]. The

N × N matrix C with elements ĉij can be seen as a similarity matrix between units.

Now, such matrix can be considered as input for some suitable clustering techniques,

in order to obtain a partition of theN observations intoK groups. From such partition,

we may be interested in identifying exactlyK pivotal units—pivots—which are (pair-

wise) separated with (posterior) probability one (that is, the posterior probability of
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any two of them being in the same group is zero). In fact, as discussed in [2], the

identification of such units allows us to provide a valid solution to the occurrence of

label switches.

Following the procedure described in Sect. 2, one can find units i1, ..., iK such that

the submatrix S of C, with only the rows and columns corresponding to such units,

is the identity matrix. It is still worth noticing that the availability of K perfectly

separated units is crucial to the procedure, and it can not always be guaranteed.

Practically, our interest is in finding units which should be ‘as far as possible’ one

from each other according to a well defined distance measure. The more separated

they are, the better they represent the group they belong to.

Figure 2 shows the pivotal identification of K = 4 units for a sample of N = 1000
bivariate data generated according to a nested Gaussian mixture of mixtures with K
groups and fixed means. Pivots (red) have been detected through the MUS algorithm

and through another alternative method, which aims at searching the most distant

units among the members that are farthest apart. We may graphically notice that

separation is made more efficient by the MUS algorithm, for which the red points

appear quite distant from each other. Moreover, in this specific example the pivotal

search is made difficult due to the overlapping of the K groups.

Fig. 2 Simulated bivariate sample of size N = 1000 from a nested Gaussian mixture of mix-

tures withK = 4 and input means (in black)𝝁1 = (25, 0),𝝁2 = (60, 0), 𝝁3 = (0, 20), 𝝁4 = (50, 20).
Groups have been detected through an agglomerative clustering technique. Pivots—i.e. maxima—

found by MUS algorithm (Left) with m̄ = 5 are shown in red and seem well separated in the bi-

dimensional space. Pivots found by method min
̄i(minj∉K k

C(̄ij)) are less distant each other (Right)
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4.2 Tennis Singular Features

As a simple example we apply our algorithm to a case study regarding tennis play-

ers. We collect N = 8 game’s features (hereafter GF) for T = 25 players from the

Wimbledon Tournament 2016,
1

and we assign the following values

{
GFi,t = 1, if player t has GFi,
GFi,t = 0, if player t has not the GF i.

Game’s features belong to K = 2 groups, which somehow refer to the attack and

the defence skills for each player. We denote with the label 1 the first group and with

2 the second group: ‘First Serve Receiving Points’ (2), ‘Second Serve Receiving

Points’ (2), ‘Break Points Won’ (1), ‘Serve Speed’ (1), ‘Aces’(1), ‘First Serve Points’

(1), ‘Second Serve Points’ (1), ‘Break Points Conversion’ (2).

We decide to assign a specific game feature to a given player if this player belongs

to the first five positions of that game’s feature rank reported by the Wimbledon’s

website. Hence, let us enumerate the above-mentioned features from one to eight.

Our 0–1 dataset has as many records as players. The problem setting is summarized

below.

GF

Player 1 2 3 4 5 6 7 8

Federer 1 1 0 0 0 0 0 0

Murray 1 1 1 0 0 0 0 0

Note that Federer is assigned game’s feature one (‘First Serve Receiving Points’)

and two (‘Second Serve Receiving Points’) only, Murray is assigned game’s feature

one, two and three (‘Break Points Won’) and so on. We define the N × N symmetric

matrix, C, in which the generic element C(i,j) is the number of players that have both

features i and j.

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 5 3 1 3 0 0 0
5 1 2 1 2 0 0 0
3 2 1 0 1 0 0 0
1 1 0 1 2 0 0 0
3 2 1 2 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We would like to extract the two ‘most distant’ game’s features for the two groups,

i.e. the two features in correspondence of which the matrix C is zero more often, and

1
http://www.wimbledon.com/en_GB/scores/extrastats/index.html.

http://www.wimbledon.com/en_GB/scores/extrastats/index.html
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for which Si1,i2 is an identity matrix. We can notice that rows 6 and 7 of C are full

of zeros: this means, for instance, that according to our short dataset C(6,1) = 0, i.e.

the ‘First Serve Points’ (k = 1) and ‘First Serve Receiving Points’ (k = 2) do not

coexist to any player. Are they the most distant features between the two groups? To

answer this question, we run the MUS algorithm by fixing m̄ = 3 and we find the

candidate maxima j11 = 6, j21 = 7, j12 = 8, j22 = 1 and maxima i1 = 6, i2 = 8. Hence

we conclude that ‘First Serve Points’ (six) and ‘Break Points Conversion’ (eight) are

quite unlikely to belong to the same player.

5 Conclusions

A procedure for detecting small identity submatrices from a N × N matrix has been

proposed. It has been initially considered for application to the pivotal approach in

label switching problem in the analysis of Bayesian mixture models. The proposed

method is discussed in detail and employed for different practical problems.

Its efficiency and its sensitivity to parameter choices is investigated through a

simulation study, which shows that for a small number of groups the procedure is

quite fast. Moreover, even for small values of the precision parameter m̄ the procedure

appears quite stable in terms of units indexes, suggesting that a higher value of m̄ is

often not required. This is also confirmed by the results in Sect. 4.

Further issues for future research are related to the optimization of the proposed

algorithm and the definition of suitable indicators for detecting both diagnostic prob-

lems inherent to the procedure and goodness of units choice.
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