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Abstract
There is growing interest in the analysis of replication studies aimed at reassessing
original findings across a wide range of scientific disciplines. In the context of hypoth-
esis testing for effect sizes, two Bayesian approaches stand out for their principled use
of the Bayes factor (BF): the replication BF and the skeptical BF. The latter, built
around the skeptical prior, represents the perspective of an investigator who remains
unconvinced by the original results and seeks to critically reassess them. In this paper,
we adopt the skeptical viewpoint and introduce a novel mixture prior that incorporates
skepticism while offering control over prior-data conflict. We study the consistency
properties of the resulting skeptical mixture Bayes factor and examine its relationship
to the standard skeptical BF. Through a focused simulation study, we conduct a sensi-
tivity analysis of the skeptical mixture BF with respect to prior-data conflict, covering
a range of plausible experimental scenarios. Our results show broad agreement with
the standard skeptical BF under typical conditions. However, in situations where the
standard skeptical BF suffers from severe prior-data conflict, our approach can yield
a meaningful adjustment in the reported strength of replication success. Finally,we
illustrate the practical application of our method using case studies from the Social
Sciences Replication Project.
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1 Introduction and background

The so-called “replication crisis” has raised serious concerns about the reliability of
scientific findings across a wide range of disciplines (Open Science Collaboration
2015; Camerer et al. 2018). This has sparked growing interest in the analysis of repli-
cation studies. Several attempts have been made to precisely define the notion of
“replication success”; see, for example, Hutton et al. (2020), Anderson and Maxwell
(2016), Johnson et al. (2017), Ly et al. (2019), Hedges and Schauer (2019), Harms
(2019), and Held (2020).

Within the Bayesian framework, the Bayes factor (BF) (Kass and Raftery 1995)
has become an important tool for evaluating the strength of evidence in replication
studies. Two notable examples are the replication BF introduced by Verhagen and
Wagenmakers (2014) and the skeptical BF developed by Pawel and Held (2022).

This paper focuses on the latter approach, which combines reverse-Bayes analysis
(Good 1950) with Bayesian hypothesis testing. Specifically, the skeptical BF approach
constructs a skeptical prior for the effect size such that the original study’s findings
are no longer convincing from a Bayesian perspective. This skeptical prior is then
contrasted with an advocate prior, that is the reference posterior for the effect size
obtained from the original study. Replication success is declared if the replication data
favor the advocate prior over the skeptical prior more strongly than the original data
favored the skeptical prior over the null hypothesis. The skeptical Bayes factor thus
determines the highest level at which replication success can be claimed.

A key strength of the skeptical BF approach is its ability to integratemultiple aspects
of replicability. In particular, it ensures that both the original and replication studies
provide substantial evidence against the null hypothesis and penalizes discrepancies
between their effect estimates. For further details, we refer the reader to (Pawel and
Held 2022).

Building on this framework, we propose a novel extension based on the skepti-
cal mixture prior. Our method introduces a flexible mixture prior governed by two
hyperparameters: one controlling the prior mass assigned to the null effect in the dis-
crete component, and another regulating the variance of the continuous component.
This added flexibility helps to mitigate the consistency issues inherent in the standard
skeptical prior. Moreover, it facilitates the assessment of prior-data conflict (Evans
and Moshonov 2006) and enables sensitivity analysis to support practitioners in their
evaluation.

The remainder of this paper is organized as follows. The rest of this section pro-
vides additional background and motivation for our methodology. Section 1.1 reviews
the replication BF, while Section 1.2 outlines the main features of the skeptical BF.
Sections 1.3 and 1.4 focus on the consistency properties of both the replication BF and
the skeptical BF, examining scenarios where replication sample sizes increase, while
the original data remain fixed. In this context, we show that the skeptical BF fails to
achieve consistency, irrespective of the true effect size. Section 1.4 further discusses
information consistency and argues that this property lies outside the scope of the
skeptical BF due to the non-nested structure of the hypotheses.

In Section 1.5, we address the issue of prior-data conflict and discuss why this
concern is particularly relevant for the skeptical approach in replication studies.
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Section 2 constitutes the core of the paper. It presents our proposed skepticalmixture
prior and its associated Bayes factor, examines its consistency properties, and high-
lights connections to the standard skeptical BF. Additionally, we illustrate the method
through examples and report results froma focused simulation study designed to assess
the sensitivity of the Bayes factor to prior-data conflict across a variety of plausible
scenarios.

In Section 3, we apply our methodology to selected case studies from the Social
Sciences Replication Project (Camerer et al. 2018) and assess its performance in terms
of robustness and comparison with alternative Bayesian approaches.

Finally, Section 4 summarizes the main advantages of our proposed method and
outlines possible extensions. To maintain the flow of the main discussion, technical
details and proofs have been collected in the supplementary material.

1.1 The replication Bayes factor

Consider two Bayesian models for the same observable y

Hj : { f (y | Hj , θ j ); f (θ j | Hj )}, j = 1, 2, (1)

where f (y | Hj , θ j ) is the sampling distribution under Hj indexed by parameter θ j ,
and f (θ j | Hj ) is the corresponding parameter prior. We evaluate the plausibility of
H1 relative to H2 based on data y through the Bayes factor (BF)

BF1:2(y) = f (y | H1)

f (y | H2)
, (2)

where f (y | Hj ) = ∫
f (y | Hj , θ j ) f (θ j | Hj )dθ j is themarginal likelihood of y under

Hj , also named the marginal likelihood of Hj .
In expression (1) both the data distribution and the prior may depend on Hj . In

our setting, however, the family of data distributions is the same under H1 and H2
with the same parameter θ say, so that f (y | Hj , θ j ) = f (y | θ); as a consequence,
Hj characterizes only the prior for θ , and model comparison reduces to a Bayesian
hypothesis testing problem.

Let θ be the effect of a treatment on an outcome of interest, and θ̂o and θ̂r denote
estimators (typically MLE) of θ obtained under the original and the replication study,
respectively, with corresponding standard errors σo and σr . Following common prac-
tice inmeta-analytic studies, we further assume that the sample sizes nk are sufficiently
large to justify a normal distribution for the estimators, so that θ̂k | θ ∼ N (θ, σ 2

k ) with
σk known, k ∈ {o, r}. This represents a reasonable approximation for various types
of effect sizes, including means and mean differences, odds ratios, hazard ratios,
risk ratios or correlation coefficients, usually after a suitable transformation; see, for
instance, (Spiegelhalter et al. 2003, Section 2.4).

The following notation will also be useful in the sequel. Denote the z-values asso-
ciated to the estimates of the two studies with zo = θ̂o/σo, zr = θ̂r/σr , respectively;
the relative effect estimate with d = θ̂r/θ̂o; the variance ratio with c = σ 2

o /σ 2
r . Since
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for many types of effect sizes the variances are inversely proportional to the sample
size, often one can safely assume that σ 2

k = σ 2/nk , k ∈ {o, r}, where σ 2 is the unitary
variance in each study. In this case c = nr/no, the ratio between the replication and
the original sample size.

Of particular interest in our setting is the situation wherein zo is sufficiently large in
absolute value, so that the original experiment is believed to provide substantial evi-
dence that there is truly an effect, i.e., θ �= 0. To evaluate to what extent a replication
study resulted in a success, thus confirming the original finding, Verhagen andWagen-
makers (2014) compared two hypotheses using replication data θ̂r | θ ∼ N (θ, σ 2

r ). The
first one is the standard null hypothesis H0 : θ = 0 of no effect. The second one reflects
the opinion of an advocate who believes the effect to be consistent with that found
in the original study. This is quantified through a posterior distribution on θ , condi-
tionally on the original data θ̂o, and based on a flat prior for θ . The resulting advocate
prior becomes

HA : θ ∼ N (θ̂o, σ
2
o ).

The BF of H0 against HA,

BF0:A(θ̂r ) = f (θ̂r | H0)

f (θ̂r | HA)
≡ BFR,

is named the Replication Bayes factor. It can be verified that

BFR = √
1 + c exp

{

− z2o
2

(

d2c − (1 − d)2

1/c + 1

)}

. (3)

Replication success is declared whenever BFR is sufficiently low to provide con-
vincing evidence against H0, based on conventional evidence thresholds essentially
dating back to Jeffreys (1961); see, for instance, (Schönbrodt andWagenmakers 2018,
Table 1). It may be observed that the replication BF is a partial BF (O’Hagan and
Forster 2004) for checking H0 against its complement θ �= 0 when the prior under
HA is flat. In this context, θ̂r is used as comparison data and θ̂o as training data; see
also Ly et al. (2019). Notice that BFR provides an answer to the following question:
“In the replication experiment, is the effect absent or is it similar to what was found
in the original one?”, where the latter supposition is represented through HA. This
should be contrasted with more traditional default Bayesian testing methods, where
the alternative is usually a relatively uninformative prior centered on the null value
θ = 0; see, for instance, Wetzels and Wagenmakers (2012). We highlight that BFR

establishes a useful connection between the replication and the original experiment,
through the advocate prior. However, replication success is declared on the basis of the
evidential strength against H0 when compared to HA solely under the replication data.
In other words, there is no explicit consideration of the evidence against H0 provided
by the original data. This issue in taken up in the next section.
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1.2 The skeptical Bayes factor

Pawel and Held (2022) propose a different route to establish replication success. Their
key idea is to compare two particular BF’s: one based on the original data and the other
one on the replication data. For the former they compare the standard null hypothesis
of no effect H0 against that of a skeptic who is unconvinced by the result. This view is
operationalized through a skeptical Normal prior, centered on zero and with a variance
σ 2
S = gσ 2

o , where g is chosen so that the resulting BF provides unconvincing evidence
against the null hypothesis. In other words, the skeptic wishes to “challenge” the
original finding and requires the Bayes factor to attain a value so that s/he cannot
take a definitive commitment against the null, and thus, further investigation (namely
the replication experiment) is called for. More formally, let 0 < γ < 1 be a level
of skepticism and gγ be the value of the relative sufficiently skeptical prior variance
corresponding to this level γ such that the comparison of

H0 : θ = 0 vs HS : θ ∼ N (0, gγ σ 2
o ) (4)

leads to a Bayes factor of H0 against HS equal to γ , that is

BF0:S(θ̂o; gγ ) = γ,

where

BF0:S(θ̂o; gγ ) =
√

(1 + gγ ) · exp
{

−1

2
· gγ

1 + gγ

· z2o
}

. (5)

In principle, γ would be set to a level such that values of BF0:S equal to, or lower
than γ , would be considered adequate evidence against H0.

For instance, γ = 1/10 could be a suitable choice, because values of BF0:S in
the interval (1/10,1/3) provide only moderate evidence against H0, while those in the
interval (1/30, 1/10) imply strong evidence against H0; see again Table 1 of Schönbrodt
andWagenmakers (2018) (notice, however, that theBF in their table is the reciprocal of
ours). A slightly different classification scheme for Bayes factor evidence is available
in Kass and Raftery (1995).

We note that the prior N (0, gγ σ 2
o ) represented by HS in (4) is named the skeptical

prior (at level γ ) and is constructed through a reverse-Bayesmethodology, a technique
dating back to Good (1950). The term “reverse” is employed because the prior is
specified in such a way to induce a specific value for the BF after the data θ̂o will be
collected; see Held et al. (2022) for an insightful discussion of reverse-Bayes ideas.

The value of gγ , whose dependence on the original data is omitted for simplicity, can
be explicitly computed as in Pawel and Held (2022, formula (3)). It must be pointed
out, however, that gγ will not exist when BF0:S(θ̂o, g) is always above γ for any
g > 0: this happens, for instance, when |zo| ≤ 1, and γ ≤ 1; but it may also happen
for 1 < |zo| ≤ 2 if γ is smaller than 1/3. However, these situations are of little interest,
as values of zo smaller than two are generally not considered sufficient to claim the
presence of an effect or justify replication. On the other hand, when BF0:S = γ is
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attainable, there will typically be two values of gγ leading to this result. The higher
value, which is usually much greater than the smaller value, is merely an instance of
the Jeffreys–Lindley paradox (Shafer 1982) and is accordingly discarded because it
represents vagueness rather than skepticism.

Clearly, the skeptical prior is data-dependent; however, its use is confined to obtain
a BF whose value, on the original data, is set based on external considerations. The
skeptical distribution will then be used as a regular prior to construct a BF based on
the replication data θ̂r , and in that context is not data-dependent.

Turning to replication data, the next step involves comparing the skeptical prior
HS : θ ∼ N (0, gγ σ 2

o ) against the advocate prior HA : θ ∼ N (θ̂o, σ
2
o ), leading to

BFS:A(θ̂r ; gγ ) =
√

1/c + 1

1/c + gγ

exp

{

− z2o
2

(
d2

1/c + gγ

− (d − 1)2

1/c + 1

)}

, (6)

where zo = θ̂o/σo, d = θ̂r/θ̂o, and c = σ 2
o /σ 2

r . Replication success at level γ is
declared if

BFS:A(θ̂r ; gγ ) ≤ BF0:S(θ̂o; gγ ) = γ. (7)

In thewords of Pawel andHeld (2022) “It is natural to consider a replication successful
if the replication data favor the advocate over the skeptic to a higher degree than the
skeptic’s initial objection to the original study”.

Rather than fixing a value γ and then checking whether Equation (7) holds, one
might instead look for the smallest γ satisfying (7), namely

BFS ≡ inf {γ : BFS:A(θ̂r ; gγ ) ≤ γ }. (8)

The value BFS is called the skeptical BF, and represents the smallest γ level for which
replication success can be established. Clearly, the smaller the BFS , the stronger
the degree of replication success. For instance, if BFS = 1/6, this means that the
replication experiment can at most successfully support the original findings with a
moderate level of evidence. However, the level improves to strong if BFS = 1/20,
say.

It may happen that BFS does not exist, because there is no γ for which replication
success can be established, but this usually occurs when |zo|, or |d| = |θ̂r |/|θ̂o|, or
both are too small. More details are provided in Pawel and Held (2022).

1.3 Consistency

Model selection consistency (Liang et al. 2008), or simply consistency, is the property
of a statistical procedure to recover the true model (or hypothesis) as the sample size
grows. Below we analyze separately the behavior of the replication and the skeptical
Bayes factor. In both cases consistency is evaluated relative to a sequence of replication
datasets whose sample size is assumed to grow indefinitely.
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Proposition 1 Consider a sequence of replication datasets with increasing sample
size nr = 1, 2, . . .. Assume there exists a corresponding sequence of estimators
{θ̂ (nr )

r }∞nr=1 of a common parameter θ whose distribution for sufficiently large nr can

be approximated as θ̂
(nr )
r | θ ∼ N (θ, (σ

(nr )
r )2) with σ

(nr )
r known. Denote with BF (nr )

R

the replication BF based on θ̂
(nr )
r . Let θ∗ denote the true value of θ . Then the following

limits in probability hold

if θ∗ = 0, BF (nr )
R →

nr→∞ ∞ at rate O(
√
nr );

if θ∗ �= 0, BF (nr )
R →

nr→∞ 0 at rate exp{−Knr },
(9)

where K > 0 is a positive constant. As a consequence, BFR is consistent.

Proof See supplementary material.

Proposition 2 Under the assumptions of Proposition 1, let pS(·) and pA(·) denote the
density of the skeptical and the advocate prior leading to (6). Let θ∗ denote the true
value of θ . Then the following limit in probability holds

BFS:A(θ̂ (nr )
r ; g) →

nr→∞
pS(θ∗)
pA(θ∗) . (10)

Proof See supplementary material.

It follows from Proposition 2 that consistency does not hold for BFS:A because it
converges to a constant irrespective of the true value θ∗. Ly andWagenmakers (2022),
discussing Bayes factors for “peri-null” hypotheses, also mention, as a particular
case, the inconsistency of BFS:A. We note that both the consistency of BFR and
the inconsistency of BFS:A reported in Proposition 1 and Proposition 2, respectively,
are in accordwith theoretical results on the asymptotic behavior of Bayes factors under
rather general conditions on model and priors presented in Dawid (2011).

Proposition 2 highlights the fact that the pair {HS; HA} leading to BFS:A is a
comparison between two opinions (priors) on the parameter for the same model. The
bottom line is that even an infinite replication sample size cannot favor one over the
other overwhelmingly.

1.4 Information consistency

Besides consistency, another useful criterion to evaluate a Bayes factor is information
consistency. Bayarri et al. (2012) present this criterion with regard to two nested
models, M0 and M , with M0 (the null model) nested in M . Let�M0:M (y) be the usual
likelihood ratio between M0 and M given the data y, and consider a sequence of data
vectors {ym} of fixed sample size, such that

lim
m→∞ �M :M0(ym) = ∞, (11)
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so that, in the limit, the data provide overwhelming evidence in favor of M . It is then
required that the BF in favor of M follows suit and diverges accordingly. We show
in the supplementary material (Proposition S.1) that BFR is information consistent.
On the other hand, the notion of information consistency becomes vacuous when it
comes to the skeptical BFS:A, because the two models under comparison are not
nested, as already mentioned at the end of Section 1.2. We note that some concerns
about information consistency are addressed in Pawel and Held (2022 Section 3.4), to
whom we refer for further details.

1.5 Prior-data conflict

The skeptical prior is constructed in such a way that BF0:S(θ̂o; gγ ) = γ so that the
original finding is made unconvincing at level γ . How reasonable is the skeptical prior
θ ∼ N (0, gγ σ 2

o ) relative to the information on θ provided by the data θ̂o in the original
experiment?

The same concern applies to N (0, gSσ 2
o ), where gS is the value corresponding to

BFS defined in Equation (8) (assuming it exits). Surely a skeptical prior which is
at odds with the original data would appear suspicious to an external agent (e.g., a
regulatory agency, such as the Food and Drug Administration (FDA) or the European
Medicines Agency (EMA)). Indeed being skeptical does not mean being unrealistic.

We address this issue using the notion of prior-data conflict (Evans and Moshonov
2006; Egidi et al. 2021); see also Held (2020) in the context of replication studies.
Notice that both Evans and Moshonov (2006) and Held (2020) use this concept to
define features of the prior for a given statistical model whose structure is not ques-
tioned. This is also the approach we follow in this paper. In this section we simply
sketch the idea. Consider a statistic T having distribution fT (t |θ) and a prior θ ∼ π(θ).
The marginal density of T is given by

mT (t) =
∫

fT (t |θ)π(θ)dθ, (12)

where t ranges over the set of values of T . Let tobs be the observed value of T . The
p-value for prior-data conflict (Evans and Moshonov 2006) is defined as:

P(tobs) = PrmT {t : mT (t) ≤ mT (tobs)}, (13)

where PrmT (·) is the probability computed under the marginal mT (·) in (12). The
index P(tobs) can be interpreted as a measure of surprise of the value tobs relative to
our uncertainty on T described in (13). Intuitively, if P(tobs) is small, a surprising
value has occurred, suggesting prior-data conflict. In particular, if mT (·) is unimodal,
P(tobs) provides the tail probabilities under mT (·), where the tails are the t-values
whose density is below the cutoff mT (tobs).
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2 The skeptical mixture prior and its Bayes factor

Our novel contribution is to generalize the skeptical prior HS : θ ∼ N (0, gγ σ 2
o )

employed in (4) to a mixture prior composed of a point mass and a continuous com-
ponent. These type of priors have been already implemented as variants of the classic
spike-and-slab prior (Mitchell and Beauchamp 1988), and they have also been used
as data distribution in genomic studies (Taylor and Pollard 2009).

Specifically, we define the family of skeptical mixture priors at level γ ∈ (0, 1) as

H̃SM : θ ∼ ψγ δ0 + (1 − ψγ )N (0, hγ σ 2
o ), (ψγ , hγ ) ∈ Uγ , (14)

where 0 ≤ ψγ ≤ 1 is a weight, δ0 is the Dirac measure at θ = 0, hγ > 0 is the relative
variance, and Uγ is the set of pairs (ψγ , hγ ) such that the BF for the comparison of
H0 : θ = 0 against the hypothesis HSM described in (14) is equal to γ , that is

BF0:SM (θ̂o;ψγ , hγ ) = γ, (15)

then in symbols Uγ = {(ψγ , hγ ) s.t . BF0:SM (θ̂o;ψγ , hγ ) = γ }. It can be checked
that

BF0:SM (θ̂o;ψγ , hγ ) = {ψγ + (1 − ψγ )BFS:0(θ̂o; hγ )}−1,

where BFS:0(θ̂o; hγ ) is the reciprocal of BF0:S(θ̂o; hγ ) defined in (5) with gγ = hγ .
Family (14) is empty if condition (15) cannot be fulfilled.
It is worth emphasizing that, differently from the skeptical prior, our skeptical

mixture comprises a family of distributions, which includes the skeptical prior (4) as
a special case by setting (ψγ = 0, hγ = gγ ).

2.1 Prior-data conflict under the skeptical mixture prior

Consider θ̂o|θ ∼ N (θ, σ 2
o ), with σ 2

o known, and assume that θ is distributed according
to the skeptical mixture prior at level γ , (14). The marginal density of the estimator
θ̂o is

m(θ̂o) =
∫

N (θ̂o|θ, σ 2
o )dFSM (θ),

where N (θ̂o|θ, σ 2
o ) is a shorthand notation for the sampling density of θ̂o and FSM (θ)

the cdf of the mixture prior (14). We obtain

m(θ̂o) = ψγ N (θ̂o|0, σ 2
o ) + (1 − ψγ )N (θ̂o|0, σ 2

o (1 + hγ )). (16)

Simplifying the notation, the structure of Equation (16) can be formally written as

mT (t) = ψN (t |0, σ 2) + (1 − ψ)N (t |0, σ 2(1 + h)). (17)
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To evaluate the p-value for prior-data conflict P(tobs) defined in (13) with regard
to (17), it is expedient to introduce an auxiliary random variable V having a Bern(ψ)

distribution and define the joint density of (T , V ) as h(t, v|θ) = f (t |v, θ)g(v) where
g(0) = ψ , g(1) = (1 − ψ) and

f (t |v, θ) =
{
N (t |0, σ 2) if v = 0

N (t |θ, σ 2) if v = 1.

Let θ ∼ N (θ |0, σ 2 · h). Then, marginally

h(t) =
∑

v

{∫
h(t, v|θ)N (θ |0, σ 2 · h)dθ

}

g(v)

= ψ

∫
N (t |0, σ 2)p(θ)dθ + (1 − ψ)

∫
N (t |θ, σ 2)p(θ)dθ

= ψN (t; 0, σ 2) + (1 − ψ)N (t; 0, σ 2 · (1 + h)),

which coincides with (17).
Since V is ancillary, one can condition on it to compute prior-data conflict; see

Evans and Moshonov (2006). Hence,

P(tobs |v = 0) = Pr
{
N (T |0, σ 2) ≤ N (tobs |0, σ 2)

}

P(tobs |v = 1) = Pr
{
N (T |0, σ 2(1 + h)) ≤ N (tobs |0, σ 2)(1 + h)

}
,

whence
P(tobs) = ψP(tobs |v = 0) + (1 − ψ)P(tobs |v = 1). (18)

Lemma Let T ∼ f (t) = N (t |0, τ 2). Then

Pr{ f (T ) ≤ f (tobs)} = Pr

{

U ≥
(
tobs
τ

)2
}

,

where U ∼ χ2(1), a chi-squared distribution with one df.

Proof f (T ) ≤ f (tobs) iff
( T

τ

)2 ≥ ( tobs
τ

)2
, and (T /τ)2 ≡ U ∼ χ2(1). �

Using the lemma together with (18) and reverting to the notation used in (16), the
p-value for prior-data conflict based on the skeptical mixture prior (14) is

P(θ̂o;ψγ , hγ ) = ψγ (1 − G1(z
2
o)) + (1 − ψγ )(1 − G1(z

2
o/(1 + hγ ))), (19)

where G1(·) is the cdf of a chi-squared distribution with one df.
Since any element in the set Uγ of hyperparameters {(ψγ , hγ )} describing the

family (14) leads to a BF equal to γ , a skeptic is offered the opportunity to identify
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Fig. 1 α-contours of p-values for prior-data conflict (solid black line). Contour for BF0:SM (θ̂o;ψ, h) = γ

(dashed red line), for zo = 2.8 and three selected values of γ . The intersection between the p-value at level
α and the BF0:SM at level γ yields the pair of solutions (ψγ,α, hγ,α) (color figure online)

a specific pair (ψγ,α, hγ,α) by adding the additional constraint that the prior-data
conflict is equal to α. As for ordinary p-values, very small values of α suggest that the
observed θ̂o is highly unlikely to occur under the skeptical mixture prior. Conventional
thresholds for declaring prior-data conflict are α = {0.10, 0.05, 0.01} where a lower
value represents a stronger conflict.

The task of identifying the pair (ψγ,α, hγ,α) can be visually represented by plotting
in the (h, ψ) space: i) the contour lines realizing P(θ̂o;ψ, h) = α for a grid of α-
values, where P(θ̂o;ψ, h) is identical to the expression in (19) except that (h, ψ) are
unconstrained; ii) the contour line Uγ for a given γ , and finally looking for possible
points of intersection.

Figure 1 illustrates our procedure with zo = 2.8, three levels of γ and a grid of
values for α. Notice that both the γ and α-contours are concave. Additionally the
α-contours are increasing over the h-range considered in the plot. To see why this
occurs, simply observe that if we raise the massψ and keep h fixed (or set it to a lower
value), this will reduce the area in the tails of mT (·); see (12). Accordingly, to keep
α constant, both h and ψ must jointly increase. Finally, as α increases, the α-contour
allows only values h > hα with hα increasing in α.

We now consider the three γ -contours in the three panels of Figure 1. To understand
the difference, we argue as follows. First of all the value zo = 2.8 represents a sub-
stantive effect size: in a frequentist setting it would be regarded as highly significant
(two-sided p-value ≈ 0.005). Consider the left panel, characterized by a low level of
skepticism with γ = 1/1.3 sufficiently high to represent merely “anecdotal” evidence
against H0. To achieve this relatively high level of γ , the prior must be essentially
concentrated on θ = 0, implying an extremely strong prior belief in favor of the null
hypothesis. This situation can be obtained by letting h be negligibly different from
zero, so that the two components of the skeptical mixture, namely the Dirac measure
and the Normal distribution, are essentially indistinguishable and produce a unitary
mass on zero, regardless of the value ofψ . This explains the almost vertical part of the
γ = 1/1.3-contour. Non-negligible h values start being allowed only for extremely
high values of ψ , and hereafter h can increase further as ψ monotonically declines,
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because the Jeffreys–Lindley paradox starts kicking-in. Such priors will determine an
exceptionally strong level of prior-data conflict (α < 0.01) for most (h, ψ) values on
the vertical part, reaching the level α = 0.01 only when h starts getting bigger. The
level α = 0.05 is not even reached over the range of h values considered in the plot,
although it will be eventually intersected as h is allowed to increase.

The central panel presents a less extreme scenario. Here the level of skepticism
against H0 is increased because γ is lowered to 1/3, bordering between anecdotal
and moderate evidence. Accordingly, the vertical part of the γ = 1/3-contour is less
steep; in particular, ψ is never above the 0.8 threshold, and correspondingly the level
of prior-data conflict is always above 0.01 with intersections available at α = 0.05
and 0.10 in the range of h presented in the plot.

The right plot further increases the level of skepticism to the even smaller value
γ = 1/10, now bordering between moderate and strong evidence against H0. In this
scenario, ψ can never exceed 0.1 while h ranges between 4 and 13 approximately. In
this scenario prior-data conflict is very mild with α always above 0.2.

We conclude by remarking that the ordinary skeptical prior is represented by the
(hγ , ψγ = 0) point on the corresponding γ = BFS-contour. For BFS = 1/1.3 ≈
0.77, h is approximately 0.08

with a very high level of prior-data conflict (α < 0.01). For BFS = 1/3 h ≈ 0.5
with moderately high prior-data conflict (0.01 < α < 0.05). Finally, in the right
scenario, h is close to 4 with α = 0.2, suggesting no prior-data conflict.

2.2 The skeptical mixture Bayes factor and its relationship with the skeptical
Bayes factor

Consider now the comparison

HSM : θ ∼ ψγ,αδ0 + (1 − ψγ,α)N (0, hγ,ασ 2
o ) versus HA : θ ∼ N (θ̂o, σ

2
o ),(20)

where HSM represents the skeptical mixture prior with γ level of skepticism and α

level of conflict, while HA is the advocate prior. Let pA(·) be the density function
of the advocate prior and let f (θ̂r | HA) = ∫

f (θ̂r | θ)pA(θ)dθ denote the marginal
density of θ̂r conditionally on HA. Similarly let pS(θ; hγ,α) = N (θ; 0, hγ,ασ 2

o ) be
the density function of the continuous component of the skeptical mixture prior and
let f (θ̂r | HS, hγ,α) = ∫

f (θ̂r | θ)pS(θ; hγ,α)dθ denote the marginal density of θ̂r
conditionally on HS with given hγ,α , as in (4). Finally, let PSM (·) be the cdf of the
skeptical mixture prior (20), which is everywhere continuous, except in θ = 0, where
it makes a jump equal to ψγ,α .

Then

BFSM :A(θ̂r ;ψγ,α, hγ,α) =
∫

f (θ̂r | θ)dPSM (θ)

f (θ̂r | HA)

= 1

f (θ̂r | HA)
×

(
ψγ,α f (θ̂r | θ = 0) + (1 − ψγ,α) f (θ̂r | HS)

)

= ψγ,αBFR + (1 − ψγ,α)BFS:A(θ̂r ; hγ,α), (21)
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where BFR is the replication BF defined in (3), and BFS:A is the BF comparing the
skeptical and the advocate prior defined in (6) having relative variance hγ,α , which,
differently from gγ in (6), incorporates the prior-data conflict constraint. We then
declare replication success at level γ iff

BFSM :A(θ̂r ;ψγ,α, hγ,α) ≤ γ, (22)

that is, the data favor the advocate over the skeptical mixture prior at a higher level
than the skeptic’s initial objection. The lower this value, the stronger the claim of
replication success.

We remark that definition (22) depends on the threshold γ , as well as α. In analogy
with equation (8), the skeptical mixture Bayes factor is defined as

BFSM (α) = inf{γ : BFSM :A(θ̂r ;ψγ,α, hγ,α) ≤ γ }. (23)

As for the skeptical Bayes factor, it may also happen that BFSM :A(θ̂r ;ψγ,α, hγ,α)

remains below BF0:SM (θ̂o;ψγ,α, hγ,α) for all values of the hyperparameters. In
such situations we set BFSM (α) to be equal to the minimum value taken on by
BF0:SM (θ̂o;ψγ,α, hγ,α). Finally, there could be situations wherein replication suc-
cess cannot be established for any level of γ and α, so that BFSM (α) does not exist.
This means that the replication study is unsuccessful since it is impossible for the
advocate to convince the skeptic at any level of evidence.

The following represents an important feature of our proposal.

Result 1 Under the skeptical mixture prior introduced in (20), if ψγ,α > 0 and the
true value is θ∗ = 0, then BFSM :A(θ̂r ;ψγ,α, hγ,α) is consistent.

Proof For nr → ∞, the result follows immediately from (21) and the fact that BFR →
∞, if θ∗ = 0 because of (9), while BFS:A(θ̂r ; hγ,α) converges to a constant because
of (10). 
�

Thus, if the effect is truly absent, this will be flagged by BFSM :A with unlimited
evidence if the sample size grows indefinitely. On the other hand if θ∗ �= 0, then
the continuous skeptical component of the mixture will take the lead, and BFSM :A
will converge to the constant (1 − ψγ,α)

pS(θ∗;hγ,α)

pA(θ∗) ; see Proposition 2. While this
result is only partial, it is particularly useful in a replication setting wherein correctly
ascertaining the lack of an effect may prove very valuable to contrast an original
finding possibly pointing in a different direction.

Our next result explores some relationships between the skeptical and the skeptical
mixture Bayes factor. Essentially, it states that if the α-level of BFSM (α) is larger than
the corresponding value for BFS , then its relative variance must also be larger than
the corresponding value for BFS ; and vice versa.

Proposition 3 Let ASM = {α : BFSM (α) exists}. For α ∈ ASM denote with hSM,α

the corresponding relative variance in the skeptical mixture prior realizing BFSM (α).
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Assume the skeptical Bayes factor BFS in (8) exists and let gS > 0 be its corresponding
relative variance and αS its corresponding level of prior-data conflict.

If c = σ 2
o /σ 2

r = 1 and α ∈ ASM the following two conditions are equivalent

C1 α ≥ αS;
C2 hSM,α ≥ gS.

Proof See supplementary material.

Proposition 4 Assume the skeptical Bayes factor BFS exists. If c = σ 2
o /σ 2

r = 1 and

d = 1, then BFS = 21/4 · exp
{
− z2o

4

}
.

Proof See supplementary material.

2.3 Example

By way of illustration, consider the same setting discussed in Pawel and Held (2022
Sect. 2.2) with zo = 3, zr = 2.5 and c = σ 2

o /σ 2
r = 1, so that d = θ̂r/θ̂o = 0.83. This

setup ismeant to represent a situation often encountered in practicewith the replication
study providing a somewhat weaker evidence against the null than the original study.
Additionally, we fix the p-value for prior-data conflict at level α = 0.1.

In Figure 2 we see four curves. Two, namely BF0:S (solid dark brown) and BF0:SM
(dashed light brown), are based on the original data, while BFS:A (solid dark blue)
and BFSM :A (dashed light blue) refer to replication data.

All curves are plotted as a function of their relative variance. Additionally all skep-
tical mixture priors realize a p-value for prior-data conflict equal to α = 0.1. The
replication Bayes factor BFR is also included and appears as a constant green line
because its corresponding prior has no hyperparameters. The black cross represents
BFS , i.e., the skeptical BF, while the green one represents BFSM (α), the skeptical
mixture BF.

The solid brown curve BF0:S(θ̂o) exhibits the usual pattern, decreasing up to a
certain point and then increasing. On the other hand, the pattern of the dashed brown
curve BF0:SM (θ̂o) is quite distinct. First of all, it exists only forh larger than a threshold,
h(zo, α) say; next it is monotonically increasing over the range of values considered
in the plot. To understand the first point, set ψ = 0 in the expression of the p-
value for prior-data conflict (19) and derive that when α = 0.1: the curve must start

at h = h(zo, α) = z2o
G−1
1 (1−α)

− 1 = 32

G−1
1 (0.9)

− 1 ≈ 2.33. To further understand the

behavior of the curves, recall that zo = 3 is a resultwhich exhibits appreciable evidence
against the null. Consider BF0:S(θ̂o) first. The curve is first monotonically decreasing
and then increasing. This happens because, as the relative variance increases, it will
push mass toward areas in the θ -space better supported by the data, and thus against
the null, and this will reduce the Bayes factor in favor of H0. However, the curve
will start increasing when the relative variance becomes too high pushing mass to
the tails of the θ -space, thus causing H0 to gain evidence in comparison with HSM

(Jeffreys–Lindley paradox).
Now turn to BF0:SM (θ̂o). The main difference with the skeptical BF0:S(θ̂o) is that

the curve is always monotonically increasing. The reason why this occurs is because
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Fig. 2 Bayes factors BF0:S(θ̂o; g), BFS:A(θ̂r ; g), BF0:SM (θ̂o;ψ, h), BFSM :A(θ̂r ; ψ, h) and BFR(θ̂r ) as
a function of the relative variance. The black cross represents the skeptical Bayes factor BFS , while the
green one represents the skeptical mixture Bayes factor BFSM (α), with α = 0.1 (color figure online)

the skeptical mixture incorporates a constraint on prior-data conflict which is absent in
the skeptical prior. Specifically, pairs (h, ψ) on the same α-contour level are positively
related; see Figure 1. This implies that, as the relative variance increases, so does ψ .
Alternatively said, the effect of increasing the relative variance in the skeptical mixture
is now counterbalanced by ψ .

Now let us turn to the curve BFS:A(θ̂r ). In this case zr = 2.5, so that evidence
is still against the null, although to a lesser extent than in the original experiment.
As the relative variance increases, we know that mass is pulled away from values
around zero which are not supported by the replication data, and this will initially
benefit the skeptical hypothesis although this phenomenon will gradually reverse as
the variance gets too large. This explains why the plot of BFS:A(θ̂r ) almost mirrors
that for BF0:S(θ̂o). Similar considerations apply to the behavior of BFSM :A(θ̂r ) in
comparison to BF0:SM (θ̂o).

We now investigate the role played by prior-data conflict on the skeptical mixture
Bayes factor BFSM (α) defined in (23). Because of the presence of two hyperparam-
eters and the prior-data constraint embedded in our prior, our methodology is more
complex than in the standard skeptical approach with only a single hyperparameter.
As a consequence, fewer analytical results are available. Nevertheless we performed
extensive numerical investigations to highlight some important features of ourmethod-
ology. A summary of the results is reported in Figure 3 with special emphasis on the
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Fig. 3 Skeptical and skeptical mixture Bayes factors BFS and BFSM (α) for varying zo and d as functions
of the prior-data conflict threshold α. In all examples c = σ 2

o /σ 2
r = 1. zo = θ̂o/σo represents the z-value

associated to the estimate θ̂o of the effect under the original study, whereas d = θ̂r /θ̂o denotes the relative
effect estimate

behavior of BFSM (α) as a function of α. We have identified sixteen scenarios stem-
ming from the combination of four values for zo and four values of d. To better isolate
their role we assumed throughout c = σ 2

o /σ 2
r = 1 so that the original and replication

study present a comparable level of precision in their estimation of the effect. Specifi-
cally, we let zo ∈ {2.5, 3, 4, 5}, representing levels of increasing evidence against the
null hypothesis in the original study, and d = θ̂r/θ̂o ∈ {0.5, 0.75, 1, 1.25}, identify-
ing different replicability ratios with d = 1 representing a benchmark in which the
original and replication effect estimates are identical.

Each panel reports the corresponding plot of BFSM (α), whenever it exists, against
α. The skeptical Bayes factor BFS is marked by a black cross in correspondence of
the realized level of prior-data conflict attained by the skeptical prior.

The behavior of BFS appears quite natural: for a given d it declines as zo increases,
that is the level of skepticism increases as the original data provide stronger evidence
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against H0. A similar shape occurs for each given zo as d grows, in this case because
the replication data provide stronger evidence against H0. As can be expected, the
prior-data conflict realized under the skeptical prior increases (α decreases) as zo
becomes larger and becomes appreciable when zo ≥ 3, with α never exceeding the
level 0.1, suggesting some incompatibility of the skeptical prior with respect to the
original data.

The behavior of the BFSM (α) curves can be separated into two parts depending on
the value of zo.

Specifically, for zo ∈ {4, 5}, either BFSM (α) does not exist (d = 0.5), or it is
slightly declining (d = 0.75), essentially constant (d = 1) or slightly increasing
(d = 1.25). Thus,when the evidence against the null hypothesis is highly substantial—
the two-sided p-value in these situations is of the order of 10−5 or lower—the skeptical
mixture BF is in the neighborhood of 1/30 and can approach 1/100 representing strong,
respectively very strong, evidence against the null according to conventional classifi-
cation schemes for the Bayes factor; see, e.g., (Schönbrodt and Wagenmakers 2018,
Table 1). We note that these values are also similar to the standard skeptical BFS .
In conclusion, when c = 1 and zo ∈ {4, 5} replication success can be declared at a
strong/very strong level, and this conclusion is robust to the choice of the prior-data
conflict level α.

When zo ∈ {2.5, 3}, pointing to a relatively weaker effect, the curve takes on
a bathtub shape for d exceeding 0.75, while for d = 0.5 its form is more akin to a
wedge. Either way, the left arm of the curve is downward sloping, followed by a gently
declining or constant floor and then by a rising right arm (when d = 0.5 there is no floor
in the curve). Interestingly, both arms in the bathtub curves correspond to situations
wherein the BFSM :A(θ̂r ;ψγ,α, hγ,α) is always less than BF0:SM (θ̂o;ψγ,α, hγ,α) so
that BFSM (α) is chosen to be the minimum value of BF0:SM (θ̂o;ψγ,α, hγ,α); see
Equation (23). Additionally the upward sloping right arm is due to the Jeffreys–
Lindley paradox because increasing levels of α require increasing levels of the relative
variances as already described in Figure 1. More specifically, for zo = 2.5, replication
success can be established only with a level of evidence which is only anecdotal
because 1/3 < BFSM (α) < 1. On the other hand for higher values of d, the evidence
level is either anecdotal (usually in the two arms) or moderate because BFSM (α)

goes below the level 1/3 along the floor of the curve. It is worth pointing out that the
anecdotal level is reached only for values ofα in the neighborhood of either endpoint of
the interval (0, 1). One could possibly argue that for more reasonable values of prior-
data conflict (e.g., α = 0.1) replication success can be established at a moderate level.
Somewhat reassuringly this conclusion agrees with that based on the standard BFS ;
interestingly, however, this is not the case for d = 0, 75, where the analysis based
on the BFS would declare success only at the anecdotal level, while our analysis
would upgrade this conclusion to moderate and with a more reasonable value for α.
For zo = 3 results are highly robust for d ≥ 0.75 because replication success can
be declared at the moderate level and in fact close to the strong level when the curve
approaches the value 1/10 for the intermediate values of α.

In conclusion, Figure 3 shows across several concrete scenarios that the replication
assessment is robust with respect to the choice of α. From this perspective it represents
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a valuable tool for the practitioner, who can run the procedure using their available
data.

3 Case studies

In this section we consider real data sets from the Social Sciences Replication Project
(SSRP) (Camerer et al. 2018). In 2016 SSRPplanned to replicate a collection of experi-
mental studies in the social sciences published in two high-profile journals,Nature and
Science, in the period 2010-2015. Specifically, 21 studies were selected because they
satisfied three criteria: (1) they tested for an experimental treatment effect between or
within subjects, (2) they tested at least one clear hypothesis with a statistically sig-
nificant finding, and (3) they were performed on students or other accessible subject
pools. For each study, further actions were implemented to determine which treatment
effect to consider for replication. Additionally, to deal with the possibility of inflated
effect sizes in the original studies, the authors adopted a high-powered design and a
two-stage procedure to implement the replication experiment; details are spelled out
in their report (Camerer et al. 2018). Eventually, the authors discovered that only for
13 studies, out of 21, there was a significant effect in the same direction as in the
original experiment (Camerer et al. 2018, Figure 1b). Interestingly, it is only for them
that the skeptical BFS is well defined, as reported in Pawel and Held (2022 Section 5
and Table 2). In this section we analyze these 13 studies using our skeptical mixture
approach. We used the observations reported in the SSRP dataset contained in the R
package ReplicationSuccess (Held 2020).

Effect estimates for each study were originally reported on the correlation scale
r . The Fisher z-transformation was then applied to obtain an approximate Nor-
mal distribution for the estimator θ̂ = tanh−1(r), having an approximate variance
Var(θ̂) = 1/(n − 3), so that c ≈ nr/no.

For each study,we report inTable 1 the basic summary statistics (zo, zr , no, nr , c, d)

in columns 1 through 6. Next we report the hyperparameter of the skeptical -
respectively skeptical mixture- prior, namely gS and (ψSM,α, hSM,α) each computed
in correspondence of the degrees of skepticism γS = BFS and γSM = BFSM (α); see
Equations (8) and (23). Additionally, PS denotes the realized p-value for prior-data
conflict: note that PSM , if it exists, is equal by definition to the value α ∈ {0.05, 0.10}
in each block, see Equation (19). The last three columns report the three Bayes factors,
namely the skeptical BFS , the replication BFR and the skeptical mixture BFSM (α)

(when it exits; otherwise the corresponding entry is void). For completeness, the BF
curves for each of the 13 studies, and separately for α = {0.05, 0.1}, are plotted in
Figures II and III of the supplementary material, whose format is the same as Figure
2 in Section 2.3. The choice of the two values for α is done for illustrative purposes
only: α = 0.05 corresponds to a significant level of prior-data conflict, while α = 0.1
indicates a weakly significant level, similarly to what happens for the interpretation
of p-values. In general, a more complete analysis of the case studies could be done
across several values of α to assess sensitivity; see Figure 3.

We now summarize the main features which emerge.
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Overall the value of BFSM (α), when it exists, is generally less than or equal to
BFS . The only exceptions are represented by the studies Kovacs et al. (Kovács et al.
2010) and Morewedge et al. (Morewedge et al. 2010) (only for α = 0.05). Notice,
however, that for these two studies the curve of BFS:A(θ̂r ) always lies below the curve
of BF0:SM (θ̂o) as reported in Figures II and III of the supplementary material. In this
case the value assigned to BFSM (α) is by default the minimum value taken on by
BF0:SM (θ̂o); see (23). While for Morewedge et al. the difference between the two
skeptical BF’s is numerically trivial, this is not the case for the study by Kovacs et
al., although the interpretation is essentially unchanged because both BF’s belong to
the “anecdotal” evidence range. As a consequence, under our mixture methodology,
replication success is established with a stronger level of evidence (higher skepticism)
than under the standard skeptical approach; see also Figure 3 for similar situations.

From amore practical perspective, using a conventional classification for the Bayes
factor (Schönbrodt andWagenmakers 2018), we note that replication success is robust
to the choice of α for the following cases (in bracket the level of evidence which is
also shared by BFS): Balafoutas and Sutter (Balafoutas and Sutter 2012) (anecdotal);
Duncan et al. (Duncan et al. 2012) (moderate);Gneezy et al. (Gneezy et al. 2014) (mod-
erate); Kovacs et al. (anecdotal), Pyc and Rawson (Pyc and Rawson 2010) (anecdotal),
Morewedge et al (anecdotal); Wilson et al. (Wilson et al. 2014) (very strong).

For some cases, namely Aviezer et al. (Aviezer et al. 2012), Hauser et al. (Hauser
et al. 2014) and Janssen et al. (Janssen et al. 2010), BFSM (α) does not exist for each of
the considered α-values. On the other hand, if we are willing to tolerate an extremely
high level of prior-data conflict, we will get a value for BFSM (α), and this is typically
similar to BFS which exists for these studies. However, this happens at the expense of
an extremely high prior-data conflict, so that these results should be considered with
great caution because they are obtained under a very unreasonable prior. Finally, for
three cases our skeptical mixture method reports replication success at a stronger level
of evidence relative to the standard skeptical approach:

(reported in bracket): Derex et al. (Derex et al. 2013) (from moderate to strong);
Karpicke and Blunt (Karpicke and Blunt 2011) (from moderate to strong); Nishi et al.
(Nishi et al. 2015) (from anecdotal to moderate).

4 Discussion

In the context of replication studies, we introduced a method for quantifying the
success of a replication experiment in reproducing the results of the original study. We
used a meta-analytic framework with effect size estimators approximately normally
distributed with known variances, which is often a reasonable assumption for large
sample sizes, possibly after a suitable transformation.

Throughout we systematically used the Bayes factor (BF) as a measure of evidence,
coupled with reverse-Bayes techniques to elicit a skeptical prior, along the lines orig-
inally presented in Pawel and Held (2022). We proposed a novel skeptical mixture
prior which adds a component to regulate prior-data conflict in the prior.

This feature enhances the flexibility of our method and can be useful when the
standard skeptical prior exhibits an extreme conflict with the original data. Instead of
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imposing a fixed constraint on prior-data conflict, we perform a sensitivity analysis
across a range of levels to gain deeper understanding and insight into the problem.
Through a focused simulation study, we assess the sensitivity of our methodology
to the level of prior-data conflict, and demonstrate its robustness across a variety
of plausible scenarios. Reassuringly, our results show a broad agreement with those
obtained using the standard skeptical approach although, in a few cases, we observe a
meaningful shift in the degree of replication success.

Our skepticalmixture prior is characterizedby twohyperparameters,ψ andh,which
control distinct aspects of the prior: the probability mass assigned to the null value
of the effect (zero in our setup) and the relative variance, respectively. By imposing a
constraint α on prior-data conflict, the analysis effectively proceeds along α-contours
in the (h, ψ)-plane, followed by a sensitivity analysis. An alternative and more direct
approach would be to work with the unconstrained pair (h, ψ), thereby extending
the framework proposed by Pawel and Held (2022), which relies solely on the rela-
tive variance. In this setting, the Bayes factor would naturally extend to a surface in
three-dimensional space. We have briefly explored this extension separately, as it may
represent an independent avenue for future research.

We conclude by noting that prior-data conflict was measured using the p-value
proposed byEvans andMoshonov (2006). However, we emphasize that our framework
can be employed with alternative measures of conflict, such as those presented in
Reimherr et al. (2021) or in Young and Pettit (1996) and Veen et al. (2018).

Supplementary information
The supplementary material contains technical results and figures from the case

studies. Specifically: the proofs of Propositions 1, 2, 3, and 4 and the proof of
information consistency for the replication BF.

Part of the data appearing in Table 1 was downloaded from Samuel Pawel’s GitHub
page: https://github.com/SamCH93/ReplicationSuccess.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11749-025-00985-7.
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